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Introduction      

Purpose and scope 
 

This manual gives a basic and simplified theoretical background to the measurement principles of 
Acoustic Doppler Current Profilers with focus on the Aanderaa Doppler Current Profiling Sensor (DCPS 
5400/5402/5403). 
 
 
This manual gives a basic and simplified theoretical background to the measurement of waves using a 
SeaGuardII DCP Wave. 
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CHAPTER 1 The Doppler principle                         

This chapter gives a basic description of the Doppler principle and how it could be used to measure 
relative radial velocity between different objects. 

 

1.1 The Doppler Effect  
 

Acoustic Doppler Current Profilers measure water velocity using a principle of physics discovered by 
Christian Johann Doppler (1842). The Doppler effect relates to the change in frequency for an observer 
moving relative to a source of sound or light. Doppler first stated his principle in the article, ‘Concerning 
the colored light of double stars and some other constellations in the heavens’. 

In daily life a common example of the Acoustic Doppler effect or Doppler shift is the siren of an 
ambulance as it approaches, passes and recedes from an observer. Compared to the emitted frequency, 
the received frequency is higher during the approach, identical at the instant of passing by, and lower 
during recession. When the source of the waves is moving towards the observer, each successive wave 
crest is emitted from a position closer to the observer than the previous wave. Therefore, each wave 
takes slightly less time to reach the observer than the previous wave. Hence, the time between the 
arrivals of successive wave crests at the observer is reduced, causing an increase in the frequency 
(compressed sound waves).  Conversely, if the source of waves is moving away from the observer, each 
wave is emitted from a position farther from the observer than the previous wave, so the arrival time 
between successive waves is increased, reducing the frequency. The distance between successive 
wave fronts is then increased (stretched out sound waves). The total Doppler effect result therefore from 
motion of the source and motion of the observer. 

 The relationship between the source frequency, fs and the Doppler shifted frequency, fD, can be given 
by: 
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Where c is the speed of sound, vo is the velocity of the observer and vs is the velocity of the source.  

In terms of the corresponding periods Eq.  1-1  becomes:  
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1.2 Doppler shifts using acoustic scatterers 
 

A Doppler current profiler applies the Doppler principle by acting both as source and receiver while 
bouncing short pulses of acoustic energy off particles/scatterers (e.g. clay, silt, bubbles, phytoplankton, 
zooplankton) that are always present in natural waters.  The scatterers are floating in the water and are 
assumed to move with the same horizontal and vertical speed as the water. The scatterers will reflect the 
transmitted sound energy back in all directions and a small amount of the reflected signal is Doppler 
shifted towards the receiver. Because the instrument both transmits and receives sound pulse, the 
Doppler shift is doubled (once on the way to the scatterers and a second time on the way back after 
reflection). Assuming that the velocity of the particles (v0) and the instrument/source (vs) are much slower 
than the speed of sound ( cvO <<  and cvs << ), the resulting equation for the Doppler shift becomes: 

 

c
v

ff O
S2=∆   Eq.  1-3 

 

Example:  
With a 600 kHz transmitted sound frequency, 1500m/s speed of sound and scatterers moving at 1 cm/s, 
the Doppler shift is: 
 

Hz
sm
smkHzf 8

/1500
/01.06002 =⋅=∆  Eq.  1-4 

 

But what we explained so far only works when sound sources and receivers get closer to or further from 
one another.  

 

1.3 Decomposition of Doppler shift / radial motion 
 

If we come back to the ambulance approaching the observer directly, the pitch would remain constant 
until the vehicle hit him, and then immediately jump to a new lower pitch. Because the vehicle passes by 
the observer, the radial velocity does not remain constant, but instead varies as a function of the angle 
between his line of sight and the ambulance's velocity. 

In the Figure 1-1 a transmitter transmits a signal towards a reflector (scatterer). In the first figure the 
reflector is stationary. The circles around it indicates the wavelength of the returned signal in all 
directions; for a stationary target the wavelength of reflected signal will be the same in all directions and 
it will have the same frequency as transmitted, and no Doppler shift regardless of the angle.  
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Figure 1-1: Doppler shift from a stationary and moving target 

 

For a moving reflector as in the second figure, the wavelength/frequency of the reflected signal will differ 
depending on the position of the receiver. The Doppler shift will depend on both the target speed and the 
angle θ between the direction of the moving target, and the direction from the target to the transmitter.  
We assume that the source is stationary. For angles θ <90° the Doppler shift is positive and for angles θ 
>90°, the Doppler shift is negative. At θ =90° there is no Doppler shift. The angular motion changes the 
direction between the source and the receiver but not the distance separating them. 

The derived Doppler shift as function of speed and direction can be then expressed as: 

 

   Eq.  1-5 
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CHAPTER 2 Narrowband / Broadband – principles of operation 

2.1 Geometry and features of the Aanderaa DCPS 
 

The Aanderaa Doppler Current Profiling Sensor (DCPS) has four transducers acting both as transmitters 
and receivers. All four transducers transmit acoustic pulses simultaneously at approximately 600kHz. 
The transducers are oriented 90° in azimuth from each other and with a 25° angle to the vertical.  
 
They are incorporated into a cylindrical shaped housing that contains all the necessary electronics 
offering an independently working sensor. It includes a three axis solid state compass able to obtain the 
current direction independently of the sensor orientation and to constantly measure and compensate the 
measurements for tilt. A high quality temperature sensor can be included and a powerfull microprocessor 
(capable of 150 million multiplications each second) is calculating to produce results for real time output 
or storage to a logger e.g. SeaGuardII.  
 

 

 

 

 

 

 

 

Figure 2-1: The Doppler Current Profiler Sensor 5400. 

 
The configuration of tranducers on the DCPS is the so-called ‘Janus’ configuration, named after the 
Roman God, Janus, who could simultaneously look forward and backward. The configuration is 
particularly good for rejecting errors in horizontal velocity caused by instrument tilting since the two 
opposing beams allow vertical velocity components to cancel out when computing horizontal velocity. 
Also instrument tilting, pitch and roll cause velocity errors proportional to the sine of the pitch and roll. 
The four beams allow for calculation of two horizontal velocities with positive doppler shift (moving 
towards instrument) and two with negative (moving away) and four beams with vertical velocities. The 
direction of the vertical current is defined as positive when moving upwards.  
 
Actually, horizontal current speed and direction can be calculated with just three beams. The fourth 
beam is redundant but in the DCPS it allows for an evaluation of whether the assumption of horizontal 
homogeneity (as described in chapter 3.1) is reasonable, comparing the four vertical velocity 
estimates.  
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Utilizing four beams also makes it possible to calculate four different three-beam solutions by omitting 
one of the transducers. This can be useful in the case when for example one of the beams are receiving 
erroneous data caused by objects like mooring lines and floats that are not moving with the water flow. 
The DCPS has this ability built in (refer chapter 4.1). It gives enhanced possibilities to understand the 
prevailing conditions and obtain high quality data.   

The DCPS has two user selectable modes to measure currents; narrowband or broadband.  

2.2 Narrowband Doppler Processing  
 

The narrowband processing consists of measuring the frequency Doppler shift in order to calculate the 
current velocity and direction at different distance from the sensor. So far, we described the Doppler 
effect observer by one scatterer. When the transmitted signal is reflected from a number of scatterer 
distributed in the water volume, each of the scatterer will return an exact copy of the transmitted signal 
with modified amplitude and phase (refer Figure 2-2). The phase of the signal will vary with the 
distance between the scatterer and the instrument and the amplitude of the reflected signal depends on 
the acoustic impedance of the scatterer, the size of the scatterer and the distance. Due to the random 
distribution of the scatterers both amplitude and phase will be more or less random. At the receiver all 
contributions of the distributed scatterers will be summed into a single signal. This summed signal will 
reflect the average Doppler shifted signal for this cell. 

 

  

Figure 2-2: Reflection from a single reflector and cell containing a large number of scatterers 

 

The DCPS working in the narrowband mode transmits pulses, which are pure sinusoidal signals with a 
fixed frequency of 600 kHz.  

Depending on if the particles are moving away or toward the instrument the Doppler shifted signal will be 
a compressed or stretched version of the transmitted signal.  

2.3 Broadband Doppler Processing 
 
A Doppler shifted signal will either be a compressed or stretched version of the original signal. The rate 
of compression can either be measured as a change of frequency (Narrowband processing), or 
estimated by measuring the change in pulse duration (Broadband processing). In broadband two 
identical pulses are transmitted as one transmission. The time delay between them are known at the 
transmitter and measured at the receiver. Based on the change in arrival time between the two pulses, 
the radial water current speed is calculated according to  Eq.  1-5. 

The two pulses are designed in order to maximize the arrival time accuracy. A key feature to achieve this 
is to increase the bandwidth without shortening the pulse duration. 
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The accuracy of the time measurement for a given pulse is dependent on the bandwidth; 

 

  Eq.  2-1 

 

By increasing the bandwidth, the uncertainty related to the time estimate will be reduced proportionally to 
the bandwidth. A bit simplified we could say that the bandwidth of a given signal will depend on the pulse 
duration and the change of frequency during the pulse duration. Shortening the pulse will increase the 
bandwidth, but the transmitted energy will also be reduced and shorter profiling ranges will be the result. 
Another better approach is to keep the pulse duration and at the same time increase the bandwidth. This 
can be achieved by using phase modulation or even better using frequency modulation. For a frequency 
modulated signal, the net frequency span during the transmission will give the bandwidth directly. 

In narrowband the frequency is fixed, and the bandwidth of the pulse depends on the duration of the 
pulse. In Broadband mode, the DCPS transmits two successive identical sub-pulses in which the 
frequency gradually sweep/chirp from 570 to 630 kHz with a known and fixed time lag in-between the 
two pulses (see Figure 2-3).  

 

 
Figure 2-3: Illustration of a broadband Tx pulse, consisting of two identical pulses. 

 

 
The bandwidth will then only depend on the frequency sweep, and be independent of the pulse duration 
(refer Figure 2-4). By measuring the time lag between the two pulses in reception, and comparing it to 
the pulse lag that was transmitted, the Doppler shift can be calculated.  

Each of the sub pulses consists of a frequency chirp, i.e. the signal change frequency as a function of 
time. 

 

 

 



April 2019 - TD 310 DCPS Theoretical Primer       Page 13 
 

 

 

 

 

 

 

 

 

 

Figure 2-4: DCPS Tx pulse bandwidth 

 

In order to explain the principles of operation we will consider measurement at three different 
distances/cells along one of the four beams. The cells of interest are cell N and its two adjacent cells 
(see Figure 2-5).  

 

 

 

 

 

 

 

 

 

Figure 2-5: Illustration of a broadband Tx pulse, consisting of two identical sub pulses. 

 

At time t0, the transmitted pulse insonifies cell N and cell N-1. Particles moving in these two cells will 
reflect the signal back, and the received signal will be the sum of the reflections from these two cells. If 
the scatterers are uniformly distributed, 50% of the reflected signal will be from cell N and 50% will be 
from cell N-1. 

Some milliseconds later at t1, the transmitted signal has moved further and insonifies cell N+1 and N. 
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Because the two sub pulses are identical, the reflected signal from cell N at t0 will be almost identical with 
the reflected signal from the same cell at t1. By finding the maximum correlation between the two 
received signals from each cell the time lag between the two pulses can be measured. This time lag will 
be modified if the particles are moving towards the instrument or away from it. If the time between the 
two sub pulses at the transmitter is called T0, and the change in lag from the reflected cell, compared to 
T0 is called Δt, the Doppler shift and current speed v can be calculated with Eq.  2-2 below.  

 

Eq.  2-2 

 

2.3.1 Correlation factor 
 

By looking at we realize that the scatterer response from the first subpulse at t0 will be identical to the last 
subpulse at t1 if the scatterer remains the same at these two time instances.  Likewise it will be sensible 
to assume that the response from the two remaining subpulses at t0 and t1 will be totally uncorrelated. If 
the scatterers are uniformly distributed, the scatterers stays within the cell and no noise is present, the 
correlation factor will be 0.5 reflecting a 50% correlation of the signal at t0 and t1. One  could also argue 
that the signal is close to 100% correlated for 50% of the pulse, whereas the remaining 50% of the pulse 
is totally uncorrelated. 

There are three main effect that will modify the correlation factor. 

1) The signal to noise ratio will gradually be reduced with range . This will in turn reduce the part of 
the signal that is correlated as the noise at t0 and t1 will be uncorrelated. With added noise the 
correlated part of the signal will no longer be 100% correlated. 

2) If the scatterers are not uniformly distributed the energy in the correlated part will no longer 
represent 50% of the total reflected energy. This will be the case when the signal hits an object 
or a boundary like the surface or bottom. The correlation factor will typically follow these 
transitions low-high-low when an object is reflecting the transmitted pulses. 

3) In order for the correlated part to be 100% it will require the scatterers to remain identical for the 
time duration t1-t0. This can only be achieved in the case of 0 water current and the scatterers 
remains stationary. When the scatterers are exposed to current, some of the scatterers will move 
out of the cell, and some new scatterers will move in. Due to the short time duration t1-t0, the 
scatterers experience very little movement and the correlation factor for high SNR (Signal to 
Noise Ratio) cells are close to 0.5.  
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2.3.2 Ambiguity 
 

The output of the correlation process is a phase value. When the Doppler shift is zero the phase is zero. 
When the Doppler shifts increase, so will the phase. A Doppler shift of approximately 1.25 m/s along the 
beam corresponds to a phase equal to 360 (360 = 0) which is exactly the same as for zero Doppler shift. 
For this reason the cross correlation process is not able to distinguish a Doppler shift of 1.5 from a 
Doppler shift of zero. In fact any Doppler shift outside the 1.25m/s range will be wrongly detected to be 
within the range 0 – 1.25 m/s. 

This is called ambiguity and could hamper the correct operation of the instrument if not corrected for. 

For a DCPS sensor in broadband mode, the center frequency is 600 kHz. One period of average 
frequency of 600 kHz corresponds to a period time of .1067.1 6

0 sT −⋅=  By using Eq.  2-2 the ambiguity 
Doppler speed along the beam is calculated to be 1.25m/s.  

Taking into account the orientation of the beams, θ=25 degrees off the vertical axis, the corresponding 
ambiguity horizontal speed will be: 

 

 

 Eq.  2-3 

 

 

By allowing some tilt, a useful unambiguous speed of at least 1m/s will be achieved. The ambiguity lock 
function of the DCPS broadband mode can be used in order to lock the instrument in a horizontal current 
range, which is below 1m/s. 

If the user is confident that the horizontal current will not exceed 1 m/s this configuration would be the 
preferred broadband configuration. 

In case the ambiguity lock is not selected, several stages of ambiguity solving methods are automatically 
implemented in the DCPS in order to achieve a non-ambiguous solution.  

These methods include: 

 Use of transmission pulses that are designed to give different ambiguity intervals. The 
combination of phase output from these set of pulses are unique for a limited number of 
intervals. 

 Remaining ambiguities are solved by putting consistency requirement on neighbouring cells in 
time and space and using statistics in order to resolve potential ambiguity. 
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Compared to Narrowband, the Broadband mode gives a significant reduction in single ping standard 
deviation.  

For example, for a 2m cell size, the equivalent single ping standard deviation is around 3 cm in 
broadband versus 20 cm in narrowband. The variation is reduced by the square root of the number of 
ping (accuracy improvement). In this example, the accuracy of one broadband ping would be equivalent 
to = 44 narrowband pings. On other words, to reach a similar standard deviation in narrowband 
as in broadband, the defined number of pings in narrowband would have to be 44 more than in 
broadband. 

Even though the current consumption is higher per ping in broadband, the net power savings is 
significant using broadband compared to narrowband.   

When the instrument is deployed in a buoy at the surface, the buoy will be affected by the surface 
dynamics which will highly influence the accuracy of the measurement. In general the buoy will remain 
stable but may experience some movement.  In addition the surface current will also be influenced by the 
orbital movement due to surface waves. The duration of the transmitted pulse is in the order of 1ms, and 
the instrument movement during transmission may affect the measured current value. 

So, if the instrument is moving due to waves or vibration, this movement can be looked upon as 
independent noise that will be added to the single ping standard deviation from the sensor itself. 

 

  Eq.  2-4 

 

If we consider an example where the equivalent wave current noise is 20 cm/s, by using the above 
equation and assuming that the noise from the sensor is independent from the wave introduced noise, 
the ping accuracy would become:  

 

  Eq.  2-5    

 

  Eq.  2-6   

 

By evaluating the accuracy of one BB ping versus one NB ping we see that this relation has been 
significantly changed; = 1.92 ping. The BB ping is still more effective in terms of accuracy per 
ping, but not in terms of accuracy per Wh of power consumption. 
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2.3.3 Limitation in the automatic ambiguity solution 
 

The ambiguity resolving method incorporates use of two different Tx pulse sets each consisting of two 
sub pulses. In order to be able to resolve the ambiguity correctly, the 3D water current vector, as seen 
from the instrument should be fairly equal for two successive transmissions. If the instrument is exposed 
to movement during the measurement phase, this requirement would be violated and increase the 
probability of having unfiltered ambiguities in the detected current measurements.  
 
This could be the case if the instrument is installed on a surface platform exposed to heavy seas. Normal 
current fluctuations do not cause any problem to the ambiguity resolution algorithm.  
 
If horizontal current speed is expected to be above 1m/s and the instrument is expected to move around 
rapidly (as in buoy downward looking situation for example), narrowband mode is the preferred mode to 
be used.  
 

2.3.4 From signal transmission to reception 
 

Whether the instrument is configured in broadband or narrowband, the user needs to configure the 
number of cells and the cell size (from 0,5 to 5m).  

The cell could be defined as the volume of water in which the instrument is performing the measurement. 

By defining the cell size and the number of cells, and knowing the speed of sound, the instrument 
determines the time frame when the reflected signal from the corresponding cell will be received. 

In the Figure 2-6, at t0, the sensors transmits the acoustic pulse. At the receiver the recording for the 
first cell (C0) starts when the center of the transmitted pulse reaches the beginning of C0 at t2, and stops 
when the center of the pulse leaves C0 at t4. In other words, the receiver collects samples for the same 
duration as the transmitted pulse. In Narrowband, the extent of the pulse in water also matches the cell 
size. 

It will correspond to t1, when it reaches the second cell (cell1), it will correspond to t2, etc. The blanking 
zone is defined as the time needed for the transducer to shift from transmitting mode to receiving mode. 
For this reason the receiver will always start the measurement outside the blanking zone. The blanking 
zone is equivalent to 1 meter. 
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Figure 2-6: Transmission/Reception of reflected signal 

2.3.5 Cell Spacing function 
 

When configuring the instrument, it is possible to define cell spacing. When cell spacing is shorter than 
cell size there will be an overlap between cell,, the size of the cell is not changed, but the spacing 
between them is reduced as the next cell will “overlap” the previous cell. If the cell spacing is equal to cell 
size the cells will follow each other with neither space between or overlap. If cell spacing is longer than 
cell size there will be a space between to neighbour cells.  

 

 

Figure 2-7: Principles of cell spacing 

The advantage by using overlap is that one can reduce the cell spacing without reducing the cell size. 
This feature is especially useful when it is important to measure the current as close to the 
surface/bottom as possible. Cells that contain samples from the surface/bottom are contaminated by the 
strong surface/bottom reflections and are not usable for measuring the current. By having small spacing 
between cells the last good uncontaminated cell can easily be picked out. It will also improve the vertical 
resolution without reducing the cell size. 
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2.3.6 Multiple columns - surface or instrument reference functions  

 
When configuring the instrument it is possible to define up to three columns (profiles) simultaneously for 
optimum flexibility. 
Each column may be set-up with individual cell size and cell overlap, and may further be defined as 
being either instrument referred or surface referred (requires pressure sensor). 
When a column is instrument referred, the distance from the instrument to the start of the column is kept 
constant; a setting which is usually used in deep waters where the surface is distant or when bottom 
currents are to be monitored. Refer Figure 2-8. 
 

 

 

 
 
Figure 2-8: Illustration of the multiple columns capability and surface or instrument referred 
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CHAPTER 3 Calculation of vertical and horizontal currents  

 

3.1 Obtaining currents from multiple levels above/below the sensor  
 

The four transducers transmit short pulses (pings)  of acoustic energy into the water which are reflected 
against particles. By systematically clocking these reflections further and further away from the sensor 
and collecting their doppler shift, currents can be measured at multiple levels, up to 150 (divided over 
three columns; column 1: max 75 cells, column 2; max 50 cells and column 3 with 25 cells)  
simultaneously. For more information refer to the DCPS manual TD 304). 
 
An important factor in this context is knowing the speed of sound at the sensor which is obtained from an 
intergrated temperature sensor and assumed or measured salinity and pressure information. All 
instruments from Aanderaa have the option for plug-and play addition of smart-sensors for salinity, 
pressure and other parameters. It is possible to calculate the speed of sound “dynamically” so the sensor 
sends speed of sound changes based on values obtained from the sensors “continuously” to the DCPS 
sensor. 
 
In most cases for a sensor like the DCPS that has a maximum range of about 100 m in the best case, it 
is not important to know the full sound speed profile above/below. A strong stratification with large 
differences in sound speed could however have implications  for at what distance from the instrument the 
cells are located. 
 
The DCPS sensor is operating at around 600 kHz which gives a typical range of 40-100 m depending on 
the scatter conditions. In general clear water with a low amount of particles gives shorter range and so 
do warm water. But also in situations where  there is too much particles in the water (above 100 mg/l), 
like in a turbid river the range will be limited. 
 
For the Doppler current technique to be valid, some assumptions must be fulfilled: 

1. The scatterers must drift with the water currents. 

2. The water motions must be of a large scale compared to the separation of the beams (horizontal 
homogenity of the water). 

3. The water motions must be of a large scale compared to the length of the transmitted pulse (vertical 
homogenity of the water). 

The first assumption is critical since the movement of the scatterers in the water volume represents the 
water movement. It is essential that the scatterers do not move by themselves differently from the water 
current. 

The other two assumtions are less critical.  
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3.1.1 Relationship between current measured at beams and earth referenced 
current. 

 
The DCPS has four transducers that are oriented 90° in azimuth to each other and with a 25° angle to 
the vertical. The transmitted signal from the transducers 1 to 4 will propagate in the pointing directions of 
the transducers and are denoted Beam1 – Beam4 (Refer Figure 3-1 ). In the sensors reference system 
(x, y, z) the pointing directions for the transducers are defined as follows; 

• Beam 1. Pointing in positive x-axis and positive z-axis direction (x1=sin(θ), y1=0, z1=cos (θ)). 
• Beam 2. Pointing in negative y-axis and positive z-axis direction (x2=0, y2= -sin(θ), z2=cos (θ)). 
• Beam 3. Pointing in negative x-axis and positive z-axis direction (x3=-sin (θ), y3=0, z3=cos (θ)). 
• Beam 4. Pointing in positive y-axis and positive z-axis direction (x4=0, y4= sin (θ), z4=cos (θ)). 

 
The sensor reference system is defined by a right handed system with x-axis aligned with north axis, y-
axis aligned with west and z-axis aligned with up if pitch, roll and heading are all zero. 
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Figure 3-1: Sensor/beam geometry. 

Decomposition of current Doppler vector along beams: 

A positive Doppler shift is measured when the current is going towards the transducer. Any current 
direction can be decomposed into the sensors x, y and z axis. In case of a current parallel to the x-axis, 
only beam1 and beam3 will be able to measure the current, and similarly for a current parallel to the y-
axis only the beam2 and beam4 will be able to measure the current. In these two special cases the 
current will be orthogonal to the two remaining beams, hence no current will be measured at these 
beams. 

For each of the current directions x, y, and z, the contribution from each of the sensors will be reduced 
due to the angle between each of the beams and the x, y and z axis. (refer Figure 3-2.)  

 



Page 22                                                               April 2019 - TD 310 DCPS Theoretical Primer 
 

   

 

 

 

 

 

 

Figure 3-2: decomposition of beam currents 

 

Correspondingly if the current is described in the sensors reference frame x, y and z each of the beam 
currents can be described. The following equations gives the relationship between the decomposed 
current field (x,y,z) and the contribution on each of the sensors. 

 

By summing the contribution from each of the sensors for the axis x, y and z, the following equations can 
be derived. 

 

The equations (1-3) gives the relationship between the beam current and the decomposed current x, y 
and z.  

 

3.1.2 Transformation from the instrument reference system to the earth 
reference system 
 

The build in accelerometer and magnetometer is used to establish the orientation of the instrument 
relative to the earth reference system. The output from the “orientation sensor” is described as a rotation 
of the sensor along each of the axis x, y, and z. As mentioned earlier, for a non-rotated sensor, the x-axis 
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will be aligned with north, the y-axis will be aligned with west, and the z-axis will be aligned with up. A 
positive rotation around the x-axis corresponds to a positive roll value. A positive rotation around the y-
axis corresponds to a negative pitch value, and finally a positive rotation around the z-axis corresponds 
to a negative value (counter clock rotation). 

Each of these rotations can be described by a rotation matrix: 

 

By multiplying the rotation matrixes, the combined total rotation matrix can be found: 

uDuABCu ⋅=⋅⋅⋅= xyzxyzEarth  

When u is related to the current in the sensor reference frame (x,y,z), the Earthu will be related to the 
current in the earth reference frame. The product xyz ABCD ⋅⋅=  can be expressed by: 

 

This gives the relationship between the current in sensor reference frame and the current in earth 
reference frame. 
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The combination of equation (1-3) and (4-6) gives the necessary equations in order to convert Doppler 
current measurement from the four beams into the current given in the earth coordinate reference frame 
for a given orientation of the sensor. The sensor orientation is measured for each ping. Within a record 
the current are averaged in the earth reference frame while utilizing the orientation measurement 
individually on a ping to ping basis. 

At each depth level and for each of the four beams the total Doppler shift is obtained. To this both 
vertical and horizontal currents contribute but the contribution from the horizontal currents is normally 
larger because these currents are typically about 10 times stronger (unless there is strong up/down 
welling).   

By using the descrived trigonometry, the current speed obtained from the Doppler shift given by each 
transducers is decomposed into positive or negative (moving towards or away from the transducer) 
currents in the X, Y and Z planes. By summing these up from the different beams and correcting for how 
the instrument was oriented with input from the compass and the accelerometer the speed and direction 
is calculated. After this calculation is done an adjustment for sound speed, fixed or measured, is 
implemented. 

A minimum of 3 beams is needed to do these calculations but the DCPS has 4. In the DCPS the beams 
redundancy gives the possibility to calculate four 3-beam solutions and compare these with each other 
and with the 4-beam calculation. This is particularly useful if there are disturbing objects in one of the 
beams or if the circulation pattern is heterogeneous (described in Chapter 4-1). 

 

 

3.2 Compensation for tilt and rotation in each measurement (ping) 
 

With the inbuilt 3-axes compass (gives heading) and an accelerometer (gives tilt) each single is 
compensated for tilt and rotation of the sensor. 

 

Figure 3-3: Illustration of the beam repositioning when the instrument is tilted; example with 15 
degrees tilt 
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Beam repositioning: refer Figure 3-3. 
When the sensor is tilting in one direction two of the beams will become more horizontally oriented and 
two more vertically oriented. The more vertically oriented beams will have a shorter travelling distance 
than the more horizontally oriented beams to reach the depth level / the cell at which the current will be 
measured. The DCPS will automatically tilt/time compensate the individual beams for each measurement 
so that the Doppler shift obtained for all the four beams will be obtained from the same depth level to 
obtain the true horizontal layer. The tilt compensation algorithm is updated for each ping and works with 
tilts up to ±50°. Above ±35°, the tilt sensor is outside the calibrated range. The profiling range and 
accuracy will decrease. For indication, at 50° tilt, the effective range will be 25m. 

3.3 Surface current measurements  
 

The DCPS, when upward looking, has the unique ability to measure the speed of the “boundary 
condition” that can be assimilated as the surface currents in the top cm layer (requires pressure data 
either using a pressure/tide/wave sensor sending data to the DCPS or mounted on the SeaGuardII 
equipped with pressure/tide/wave sensor). When it comes to the surface cell, the difference in 
impedance between the water and air creates an almost perfect reflector. The backscattered energy 
from the surface is normally extremely strong compared to the reflections from particles in the water and 
will totally dominate this cell. The pressure/wave/tide sensor is needed to determine when the strongest 
part of the reflection will be returned to the instrument and then the Doppler Shift for this reflection is 
calculated. 
 
Due to the strong reflection from the surface boundary layer it is possible to detect the surface cell at 
longer range (100 m) compared to ordinary cells.  
Wind generates capillary waves, and rapidly accelerates the surface boundary. For this reason there will 
be a strong correlation between both wind speed/surface boundary speed and wind direction/surface 
boundary direction. 
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CHAPTER 4 The DCPS produces high quality data  

4.1 Innovative three beam solution  
 

The DCPS is equipped with unique software that makes it possible to obtain high quality current data 
even if one of the four beams is disturbed by for example an object. This can be useful in the case when 
for example one of the beams are receiving erroneous data caused by objects like mooring lines and 
floats that are not moving with the water flow. The DCPS has this ability built in. It gives enhanced 
possibilities to understand the prevailing conditions and obtain high quality data.   

There are several ways to control the quality of the measurements. These are described in detail in the 
DCPS manual TD 304. Quality parameters include Acoustic Signal Strength (low signal indicate limit of 
reach), Standard Deviation of the current speed (high standard deviation can be caused by 
mixing/turbulence and when the signal strength is weak) and Cross Difference (for each depth the speed 
in beam 1 - speed beam 3 + speed beam 2 – speed beam 4 should be close to 0).  

If the quality parameters indicate that the four beam solution are not consistent, perhaps due to an 
obstruction in one of the beams, the Auto Beam solution will use the three beam solution with the lowest 
single ping standard deviation to calculate the current speed. If the Cross Difference parameter indicates 
that the four-beam solution is consistent and of good quality, the Four-Beam solution will automatically 
be selected as the preferred Auto Beam solution. Thus, the four-beam solution is selected unless the 
Cross Difference of this solution is above a certain threshold.  

The operator can choose to activate output for all beam solutions, Auto Beam, Four Beam and the four 
Three Beam solutions. This gives enhanced possibilities of quality control.  
 
Using the trigonometry described in the Chapter 3-1, it is possible to derive the equations for the three 
beam solutions as listed in the table:   
 

 

Table 4-1 3-beam solution 
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4.2 Calculating the noise levels/standard deviation 
 

Depending on the mode, the DCPS transmits either a single tone burst or a broadband coded signal of 
duration Tp (refer CHAPTER 2 – Broadband principles of operation). The returned signal is compared to 
the transmitted pulse at a fixed time lag TL (correlation).  

The weaker the correlation the noisier the data, which means less precision in the velocity estimate.  

The standard deviation, σ, of an ensemble of pings is:  

 

pLS NPDf
A 1
⋅

=σ  Eq.  4-1 

 

where Np is the number of pings, D is the cell size and PL is the pulselength. In narrowband, the 
pulselength is set equal to the cell size, whereas in broadband the pulselength is fixed. The constant, A, 
is dependent on the mode (broadband/narrowband), frequency, bandwidth, SNR (signal-to-noise ratio) 
and other properties related to the signal processing. 

4.3  DCPS Narrowband internal processing –ARMA model 
 

In Narrowband mode, the DCPS uses an Auto Regressive Moving Average (ARMA) model to estimate 
spectral properties of the backscattered signal. 

The ARMA spectral estimation technique belongs to a family of spectral estimators called parametric 
models.  

The motivation for using parametric models is the ability to achieve better power spectrum estimation 
than that produced by classical spectral estimators.  
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CHAPTER 5 Limitations of Doppler Current Profilers  

 
Physical and technical limitations of a Doppler Current Profiler are: 

 Precision in the estimation of the Doppler frequency.  
 Influence of acoustic side lobes.  
 Measurement range. 
 Blanking distance. 
 Random and systematic errors. 

 
The precision in the estimation of the Doppler frequency has been discussed previously. The other 
limitations are discussed in this chapter. 

5.1 Influence of acoustic side lobes and the contaminated zone close to 
surface/bottom  
 

Typically, the beam pattern of an acoustic transducer has one main lobe and a number of lower energy 
side lobes on both sides of the main lobe.  A theoretical beam pattern (-30° to +30°) for a plane circular 
piston is given in Figure 5-1, for illustration.  

The main lobe is centred around 0°, the first set of side lobes are seen at approximately ±15° and the 
second set of side lobes at approximately ±25°. The level of the maximum signal in the first side lobe is 
approximately 17 dB lower than the maximum signal in the main lobe.  

The DCPS transducers are tilted 25° off the vertical axis. Hence, the distance to the surface/bottom 
along the vertical axis is shorter than along the main lobe axis.  

 

 

 

 

 

 

 

 

 

Figure 5-1: Beam pattern 
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As a result, strong signals backscattered off the surface/bottom originating from the side lobes that arrive 
at the same time as the backscattered signal from the main lobe will “acoustically contaminate” 
measurements close to boundaries like the surface (upward looking) and the bottom (downward looking). 
The contaminated zone depends of the deployment depth (when upward looking) or water depth (if 
instrument is downward looking) and the pulse length (the pulse length is approximately 1m in 
broadband and is equal to the cell size in narrowband). Please observe that surface current 
measurements, described in chapter 3-3, are not affected by the side lobe contamination.  

An illustration of the ‘good range’, R, and the illegible zone, near the surface is given in Figure 5-2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: Illustration of the good measurement range, R. 

 

Here, the distance to the surface along the vertical axis is denoted d and the distance along the main 
lobe axis is denoted dm. The cells at a distance from the transducer greater than R may be obscure (in 
the contaminated zone), while the cells at a distance from the transducer smaller than R are inside a 
good measurement range.  

The contaminated zone depends on the pulse length and the deployment depth (when upward looking) 
or water distance (distance from transducer head to bottom when downward looking).  

In broadband the pulse length is fixed and equal to 1m while in narrowband the pulse length is equal to 
the cell size. 

The expected good range and illegible zone are stated as: 
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 ( ) xdR −⋅= φcos   Eq.  5-1 

 

( ) xdRdI +−=−= )cos1( φ       Eq.  5-2 

 

where d is the vertical distance from the transducers to the surface and  is the beam angle relative to the 
vertical, if broadband is used;  , where p is the pulselength; x is half the pulselength but in 
broadband two pulses are sent after each other so x=1m as the pulse length is always 1m in broadband. 
Thus, for a 25° beam angle with no additional instrument tilt, 20m depth for example, a pulse length of 
1m in broadband, the illegible zone would be 2,9m. If the column is defined as surface referred, it should 
not start closer than 2,9m from the surface. If the column is instrument referred and the cell closest to the 
surface is inside the contaminated zone then it would have to be discarded. 

If narrowband is used , p is the pulse length/cell size so x becomes half of the cell size. If the 
cell size is 1m, the instrument 20m depth, the contaminated zone would become 2,4m. 

5.2 Total measurement range 
 

The total measurement range depends on the source level i.e. the transmitted power, the transducer 
efficiency and the frequency. At 600 kHz, the transducers are relatively small and their efficiency is 
limited by non-linear behavior and cavitation. Hence for linear wave propagation, the transmitted power 
of a small transducer is limited. An increased pulse length may increase the range by a small amount. 

Field data has demonstrated that the DCPS has an approximate range of 40-100 m depending on the 
scattering conditions. The range is similar using broadband and narrowband. 

5.3 Blanking distance closest to the instrument  
 

After transmitting an acoustic pulse, the transducers and electronics must rest a short time for the 
transducers to stop vibrating (ringing) before it is able to act as a microphone and receive the very weak 
(compared to the transmitted pulse) reflected acoustic signals.  

The ringing of the transducers depends on transducer size, frequency and the material embedding the 
transducers.   

About half a millisecond of ringing corresponds to a 1 m blanking distance assuming a sound speed in 
water of 1500 m/s.  
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5.4 Random and systematic errors  
 

Two types of errors contribute to velocity uncertainty; random and systematic (bias) errors. Random 
errors can be averaged out while systematic errors cannot.  

Random errors are reduced by the square root of the number of samples in one record. 

Random errors depend on a number of factors:  

 Pulse Length: The shorter the pulse length, the greater the random error for a given frequency.  

 Transmit Frequency: The lower the frequency, the greater the random error for a given pulse 
length. 

 SNR: The lower the signal-to-noise ratio, the greater the random error. 

Bias errors are non-random and can therefore not be reduced by data averaging. Fortunately, these 
errors are in general small, typically ~0.5 cm/s. The expression for the standard deviation is already 
shown in Eq.  4-1.  

5.4.1 Beam separation 
 

The separation of the 4 transducer beams poses a limit to the vertical and horizontal scales of motion 
that can be resolved. With increasing distance from the transducer the sampling volume (cell volume) 
and the distance between the 4 cells at the same distance from the transducer increase. Thus, a short 
period velocity fluctuation resolved in close range may not be resolved in the end of range where the 
horizontal distance between the cells is greater.  

 

5.4.2 Echo intensity and backscatters 
 

A 600 kHz transducer transmits sound waves with a wavelength of a couple of millimeters. These waves 
may bounce off small planktons, particles or air-bubbles that have an acoustic impedance difference to 
the medium itself; the water. Bubbles, however, are compressible and take energy from the sound waves 
and thus often limit the range. Bubble clouds exist e.g. in the surface wave break zone or in the wake of 
ships.  

In oceanographic applications the main limitation for obtaining good data at a distance from the sensor is 
poor backscatter. If the scatterers are comprised of large zooplankton moving independently of the water 
current, a very critical assumption is violated and data may be obscured.  

If the scatterers are too few the backscattered energy is low and self-noise may corrupt the signal. The 
backscattered energy, or the Echo Intensity, is measured by the instrument relative to the maximum 
intensity.  
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Echo intensity can be used not only as a quality parameter but also to record temporal and spatial 
relative abundance of plankton, particles and/or bubbles. The Sonar equation has to be employed and 
biological ‘ground proof’ needs to be taken. 

An estimate of the relative backscatter, RB [dBm-1], can be calculated as: 

 

ssB ddEIR ⋅⋅−−= α2)(log20 10  Eq.  5-3 

 

where EI is the echo intensity, ds is the distance to the scatterers along the beam, and  is the sound 
absorption.  

The other two terms in the equation are the volume attenuation by beam spreading, )(log20 10 sd and a 
decay of the signal due to sound absorption, sd⋅⋅α2 .  

To calculate absolute backscatter several factors like  

 Signal power 
 Noise level 
 Transducer efficiency 
 Effective diameter  

have to be included. 

Beam Spreading: 
Beam spreading is a geometric cause for echo attenuation as a function of range. It can be found that 
inside the DCPS measurement range the amplitude is inversely proportional to the distance squared, i.e. 

2

1~
Td

 (in linear units) where dT is the distance from the transducers.   

The decay in amplitude may be understood as the result of the transducers intersecting only a fraction of 
the reflected energy. 

Sound absorption:  
Absorption involves a process of conversion of acoustic energy to heat and thereby represents a true 
loss of energy to the medium in which propagation is taking place.  

An often used model for calculation of the absorption, , is the Francois-Garrison model which is a 
refinement of the Fisher-Simmons model. The Francois-Garrison model is valid in low temperature 
environments. 
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CHAPTER 6 Acoustic Waves  

6.1 Waves explained 
 

Waves are moving energy traveling along the interface between ocean and atmosphere. Most of the 
waves are generated by wind blowing across the surface; wind blows over the water surface and 
generate capillary waves. Once capillary waves are created, the friction from the turbulent air on the 
water surface increases and the energy transport from wind to waves will increase. As more energy is 
transferred to the ocean, gravity waves develop. Because they reach greater height at this stage, gravity 
replaces capillarity given these waves their name. Once a wave accumulates enough energy and grows 
to a certain size it will bump into the wave in front of it which will cause it to gain height. By gaining height 
a wave exposes its surface to more wind and gains more energy. This cycle continues producing larger 
waves as long as the wind blows in the same direction. The transferred energy from wind to waves 
depends on the wind field. The wind field is characterized by the wind speed, wind duration and the fetch 
(the fetch is the length of water over which the wind has blown). The longer the fetch and the faster the 
wind speed, the more energy is imparted to the water surface and the larger the resulting sea state (size 
of the waves) will be. This area where wind-driven waves are generated is called “sea” or the sea area. 

As waves generated in a sea area move towards its margins, wind speeds diminish and the wave 
eventually move faster than the wind. When this occurs, wave steepness decreases and they become 
long-crested waves called swells. Swells are uniform, symmetrical waves that have traveled out of the 
area where they originated. Swells moves with little loss of energy over large stretches of the ocean 
surface, transporting energy away from one sea area and depositing it in another. Thus there can be 
waves at distant shorelines where there is no wind. 

Waves with longer wavelengths travel faster and thus leave the sea area first. They are followed by 
slower, shorter wave trains or groups of waves. The progression from long, fast waves to short, slow 
waves illustrates the principle of wave dispersion – the sorting of waves by their wavelength. Waves of 
many wavelengths are present in the generating area.  

When swells from different storms run together the water clash or interfere with one another, giving rise 
to interference patterns. An interference pattern produced when two or more wave systems collide is the 
sum of the disturbance that each wave would have produced individually. The combined swells consist 
of waves of various heights and lengths that develop into a complex mixed interference pattern, which 
explains the varied sequence of high and lower wave and other irregular wave patterns that occur when 
swell approaches the seashore. In the open ocean, several swell systems often interact creating 
complex wave patterns and sometimes large waves that can be hazardous to ships. 

 

Waves are energy in motion. Waves transmit energy by means of cyclic movement through matter. The 
medium itself does not travel in the direction of the energy that is passing through it. The movement of 
particles at the ocean surface move in circular orbits referred to as circular orbital motion. 
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Figure 6-1: Distribution of energy in ocean waves. 

 

Most of the energy possessed by ocean waves exists as wind-generated waves while other peaks of 
wave energy represent tsunami and ocean tides. The waves from the range 0.5 to 30 second referred to 
as wind waves are the waves that engineers and scientists are primarily interested in when they study 
wave measurements.  

At some depth below the surface, the circular orbits become so small that movement is negligible. This 
depth is called the wave base, and it is equal to one-half the wavelength ( ) measured from still water 
level. Only wavelength controls the depth of the wave base, so the longer the wave, the deeper the wave 
base, refer Figure 6-2. 
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Figure 6-2: Illustration of orbital motion generated by ocean waves 

 

6.1.1 Deep water waves: 
 

If the water depth (z) is greater than the wave base ( ) the waves are named deep-water waves. 
Deep-water waves have no interference with the ocean bottom so they include all wind-generated waves 
in the open ocean, where water depths far exceed wave base. 

In addition, the speed of the wave, the wavelength and the period are related. So by knowing one of 
these variables it is possible to determine the two others. The general relationship is the longer the 
wavelength, the faster the wave travels. 

 

6.1.2 Shallow water waves: 
 

Waves in which depth (z) is less than 1/20 of the wavelength are called shallow-water waves, or long 
waves. Shallow water are said to feel bottom because the ocean floor interferes with their orbital motion. 
Then the speed of shallow-water waves is influenced only by gravitational attraction (g) and the water 
depth (z). Particle motion in shallow water waves is in a very flat elliptical orbit that approaches horizontal 
(back-and-forth) oscillation. The vertical component of particle motion decreases with decreasing depth, 
causing the orbits to become even more flattened. 
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As deep-water waves of swell move toward continental margins over gradually shoaling (shoal = 
shallow) water, they eventually encounter water depths that are less than one-half of their wavelength 
and become transitional waves. Actually, any shallowly submerged obstacle (such a coral reef, sunken 
wreck or sand bar) will cause waves to release some energy. 

 

Many physical changes occur to a wave as it encounters shallow water, becomes a shallow-water wave 
and breaks. The shoaling depths interfere with water particle movement at the base of the wave so the 
wave speed decreases. As one wave slows, the following waveform, which is still moving at its original 
speed, moves closer to the wave that is being slowed causing a decrease in wavelength. The energy in 
the wave, which remains the same, must go somewhere so wave height increases. This increase in 
wave height combined with the decrease in wavelength causes an increase in wave steepness (H/L). 
When the wave steepness reaches the 1:7 ratio, the waves break as surf, refer to Figure 6-3.  

 

Figure 6-3: Wave steepness increase 

As waves approach the shore and encounter water depths of less than one-half wavelength, the waves 
feel bottom. The wave speed decreases and waves stickup against the shore, causing the wavelength to 
decrease. This results in an increase in wave height to the point where the wave steepness is increased 
beyond the 1:7 ratio, causing the wave to pitch forward and break in the surf zone. 
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CHAPTER 7 Measuring waves with an Acoustic Doppler Profiler 

 

As described above, gravity waves at the surface induce orbital motion in the water column below the 
surface, ref Figure 6-2. The amplitude of the orbital motion decreases while depth of water increases 
and hardly any motion exists below a depth corresponding to half the wavelength.  If the water depth is 
less than   the waves begin to feel the bottom, and the attenuation of the horizontal component of 
the orbital movement compared to the vertical component will be different.  For this reason the 
attenuation of the orbital movement for a given water depth will be a function of the wavenumber 
(wavelength, ), the depth of interest (where the orbital movement is to be measured) and the total water 
depth. Shorter wavelength will decay (attenuate) more rapidly at a given depth compared to longer wave 
lengths, and for a given wavenumber the orbital motion will be more dampened with increasing depth. 
This attenuation can be described as the transfer function from surface elevation to the horizontal  
and vertical  component of the orbital motion. When measuring waves with a slanted beam, the 
measured orbital motion will be a combination of both vertical and horizontal orbital motion. Inputs to 
both the horizontal and the vertical transfer functions are wavenumber (k), water depth (z), and distance 
from seabed to observation cell where the orbital current is to be measured (d). 

 

 Eq.  7-1 

 

Horizontal transfer function function of k-wavenumber, d distance from seabed to cell depth and 
z-water depth. 

 

 Eq.  7-2 

 

Vertical transfer function k-is a function of k-wavenumber, d distance from seabed to cell depth and 
z-water depth. 

 

To illustrate the behaviour of the transfer functions (Hh and Hz), refer to Figure 7-1, Figure 7-2 and  
Figure 7-3,  

If we select a single observation depth we can plot the attenuation as a function of frequency. In the 
Figure 7-1a blow both horizontal, Hh and vertical transfer function, Hz are plotted as well as the transfer 
function observed by the beam tilted 25 degree of the vertical plane, Hbeam. The transfer function along 
the beam will be a combination of both the horizontal and vertical transfer function. Figure 7-1b is a 
plot of the inverse transfer function given in 5a. It represents the gain factor, or gain vector needed to 
convert the orbital movements at 5m depth into equivalent orbital movement at the surface. The 
measured Beam Speeds will then be multiplied by this vector. 
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Figure 7-1: 

a) Transfer function as function of frequency for observation depth of 5 meters. Total water depth is 
20 meters.  

b) Invers transfer function used to find equivalent orbital motion at water surface for observation 
depth of 5 meters. 
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Figure 7-2: 

a) Transfer function as function of frequency for observation depth of 10 meters. Total water depth 
is 20 meters.  

b) Invers transfer function used to find equivalent orbital motion at water surface for observation 
depth of 10 meters. 

 

Figure 7-2 is identical to Figure 7-1, but for an observation cell at 10 meters. By comparing the 
inverse transfer function for 10 meters toward the transfer function for 5 meters we can conclude that the 
orbital wave motion measured at 10 meters needs to be multiplied by larger factors, especially at high 
frequency (short wavelength).  

 

As the transfer function is both dependent on the depth and the wavelength, another way of presenting it 
is to select a fixed frequency (wavelength) and plot the transfer function for different observation depths, 
refer to Figure 7-3 below.  
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Figure 7-3: 

 
a) Transfer function (Hbeam) for two fixed frequencies (0.1 Hz and 0.2 Hz) as function of depth. 
b) Inverse transfer function (1/Hbeam) for two fixed frequencies as function of depth. 

 

Figure 7-3 shows that shorter wavelengths (high frequency - 0.2 Hz) are more rapidly dampened 
compared to longer wavelengths (low frequencies - 0.1 Hz) and needs a higher factor compared to 
longer wavelengths.  

Both signals are more attenuated at increasing depths. 

The acoustic profiler calculates the wave energy spectrum and the directional spectrum based on 
acoustic measurement of the orbital speed. The SeaGuardII DCP Wave has a four beam Janus 
configuration with beams separated by 90 degree in the horizontal plane and tilted 25 degree off the 
vertical plane. The instrument is located at the bottom looking upwards. 

In order to cover most of the shorter wavelengths of the wave energy spectrum, the measurement of the 
orbital motion should be located as close to the surface as possible. If the bandwidth is too much 
extended in the short wavelength end (high frequency), or the cell is too low under the surface, the 
orbital motion will be so low that it might be lower than the self-noise of the measuring system.  

The Figure 7-4 below shows the frequency dependent transfer function for three different depths. At 6 
meter depth approximately 10% of the energy is left at 0.3 Hz (refer Figure 7-5a). In addition the 
spectral wave energy decays with increasing frequency as shown in Figure 7-5b below. For this 
reason it is important that the self-noise of the acoustic measurement system to be kept at a minimum. 
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The chapter 8 below describes features that have been implemented into the sensor in order to keep the 
sensor self-noise at a minimum. 

 

Figure 7-4: Transfer function orbital speed versus depth 

 

Transfer function speed attenuation depending on the frequency and the cell depth. If the cell is located 
at 2m, black line. If the cell is located at 4m, green line and if the cell is located at 6m, red line. Water 
Depth = 200m. 

 

Figure 7-5: Sample of an Averaged Energy Spectrum 
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CHAPTER 8 Adaptive transmission pulse to optimize the wave 
measurement accuracy 

 

8.1 Sensor self-noise 
In order to maximize the measured bandwidth, the sensor self-noise should be kept low. For an acoustic 
profiler the self-noise can be described in terms of single ping standard deviation. The SeaGuardII DCP 
Wave can operate both in Narrowband and Broadband. The broadband mode of the SeaGuardII DCP 
Wave utilizes a dual Hyperbolic Frequency Modulation (HFM/Chirp) ensuring that the bandwidth of the 
transmission pulse matches the bandwidth of the transducer. The transmission pulse has been extended 
to a 20% bandwidth, improving the signal to noise ratio. The advantage of using the HFM broadband 
pulse compared to a sequence of coded pulses is that the available bandwidth of the measurement can 
be optimized by adjusting the sweep independent of the Tx pulse length. As a result the transition region 
is very sharp with little energy leakage outside the band of interest. The HFM pulse also gives minimal 
correlation-loss for a Doppler shifted signal. In case the broadband pulse is build up by a sequence of 
coded pulses, the lag is adjusted by modifying the number of coded sequences.  

Three different factors define the accuracy of the measurement. 

1) The bandwidth of the system, ie. Tx band, Rx band and bandwidth used in the processing chain. 
Broader bandwidth gives a narrower matched filter response and a more accurate phase 
estimate used in the Doppler processing. 

2) The time duration of the transmitted signal.  A longer TX pulse gives a longer average time and 
better Doppler estimate. 

3) The lag between the transmitted sub-pulses has a great impact on the accuracy and the 
maximum Doppler shift that can be measured. By increasing the lag the single ping standard 
deviation will be improved, but the useful range of Doppler speeds that can be read 
unambiguously will be reduced. 

The benefits of utilizing broadband can be seen in Figure 8-1. When using broadband the single ping 
standard deviation is significantly lower compared to narrowband. The result is reduced sensor self-
noise, and can be observed as reduced (noise) energy at higher frequencies. Due to less attenuation of 
the wave orbital motion at cells closer to the surface the selected cell should be as close to the surface 
as possible without coming in the side lobes contaminated surface layer. 
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Figure 8-1: Wave energy depending on the wave frequency 

 

The plain blue curve represents the wave energy while measuring in narrowband in a cell at 6m depth, 
the red curve at 8m depth and in yellow at 10m. The blue curve with cross represents the wave energy 
spectra while using broadband for a cell at 6m depth, in red at 8m depth and in green at 10m. When 
measuring high frequency waves, the sensor self-noise is amplified while multiplied with the transfer 
function, this is especially obvious in narrowband.  Broadband gives better results than narrowband in 
the high frequency domain. Cells  closer to surface provide better results compared to deeper cells. 

 

8.2 Resolving ambiguities 
 

The lag between the broadband sub pulses is an important configurable parameter for the overall 
measurement noise (uncertainty), while at the same time limiting the maximum Doppler speed that can 
be detected. The lag between the two sub-pulses is known at the time of transmission.  If the change of 
phase at the Tx Centre Frequency for the duration of the lag is less than ±π radians (ref Figure 8-2), 
the Doppler speed is correct and without any ambiguities. In case the Doppler speed exceeds the limits 
for the ambiguity interval, an error corresponding to the ambiguity interval will occur. Different methods 
are available in order to avoid or to resolve ambiguity errors. One of them is to reduce the time lag 
between the sub-pulses. This solution has a number of implications. There is a coupling between the 
noise as given in terms of single ping standard deviation and the maximum unambiguous Doppler speed 
that can be measured. 
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Figure 8-2: Ambiguity 

 

For a given speed, there are several potential ambiguity intervals for each of the dual pulse set. By combining 
these two pulse pair an unambiguous solution can be found. 

 

The lag between the sub pulses is defined by the spacing in time between the start of each sub pulse. 
The spacing between each sub pulse can be decreased by reducing the duration of each pulse and 
transmit the second pulse immediately at the end of the first pulse. This method gives a shorter 
transmission pulse and less energy transmitted. Another approach is to leave the duration of the sub-
pulses fixed. In order to reduce the lag the pulses are overlapped; the transmission of the second pulse 
starts before the end of the first pulse. This method gives requirement for the linearity of the transmitter 
output stage in order to not reduce the correlation between the two sub pulses. One way to implement 
such a solution is to implement a dual output stage and combine the signals in a linear output 
transformer. Figure 8-3 below shows the coupling between the change of lag in terms of overlap and 
the increase of single ping standard deviation. 
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Figure 8-3: Overlap 

Increasing the inter-pulse overlap reduces the time between the sub-pulses.  This increases the single 
ping standard deviation and the ambiguity interval.  

 

The above described solutions to increase the ambiguity interval can be used regardless of the 
application in which the measurement is used as for, i.e. the method can be used for both current and 
wave measurements. In both cases it is required that the measured Doppler speed does not exceed the 
ambiguity speed given for the selected pulse overlap  plotted in Figure 8-3.  

Due to sampling frequency requirements, measuring waves usually involves a relatively high number of 
pings as opposed to current measurement. When measuring current, the wave orbital motion can be 
regarded as noise. For this reason, in a wave contaminated current measurement, pings should be 
spread out over a recording interval sufficiently long to filter out the wave induced noise. The current 
fluctuation generated by waves will often be large compared to the sensor noise. In these cases, 
Narrowband mode will be useful and provides robust results with no ambiguity issue and slightly less 
power consumption compared to broadband. For power saving reasons, the number of pings and the 
ping rate would normally be lower when doing current measurement compared to a pure wave 
measurement. In the case of current measurement without wave interaction, the ping to ping current 
consistency increases. 
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8.3 Adaptive transmission pulse  
 

In case the sampling rate is sufficiently high, resolving ambiguities would be straight forward. A suitable 
sampling rate for wave measurement in a bottom installation is 4Hz  and the maximum resolvable (noise 
free) wave frequency is around 0.3Hz (<3.3s) at 20 meters water depth. Note that the maximum 
resolvable wave frequency is dependent on water depth and depth of measurement cell (refer Chapter 
5). This gives sufficient sampling of the wave signal in order to detect and correct for potential 
ambiguities. In order for this method to work it is required that the single ping standard deviation should 
be sufficiently low compared to the jump in Doppler speed due to ambiguities. In a wave application the 
ambiguity method only needs to resolve ambiguities in order to obtain a smooth and ambiguity free 
alternating current (AC) signal as opposed to a net direct current (DC)  measurement where the DC 
offset level needs to be correct. Ambiguities may cause the DC offset level to be incorrect. 

 

Figure 8-4: Sample to sample difference on Beam Speed data showing an ambiguity. This signal 
is used to identify potential ambiguities. 
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Figure 8-5: Signal with ambiguity versus Corrected signal with ambiguity removed. 

 

In order to detect and resolve ambiguities, the measured beam Doppler speed is differentiated and the 
ambiguities are detected as spikes well above the single ping standard deviation of the differentiated 
signal (Figure 8-4 and Figure 8-5. This method works best with high sample rates and low single ping 
standard deviation. The SeaGuardII DCP Wave has a single ping standard deviation in Broadband mode 
with short lag also referred to as Broadband mode 0 of around 3 cm. At 4Hz this method has been 
validated on offshore wave deployment to work flawlessly at Doppler speeds 50% above the ambiguity 
interval.  

Similarly a second broadband mode with slightly longer lag also referred to as Broadband mode 1 is 
used for higher Doppler beam speeds, and the potential ambiguities for this mode are resolved in the 
exact same manner. This mode has a slightly increased single ping standard deviation but the 
corresponding ambiguity interval is increased providing measurement at higher speed without 
ambiguities. 

In more extreme wave situations, the sensor will automatically  switch to a Narrowband mode. In 
offshore conditions it will typically be around 3.5 - 4.5m significant wave height. This  mode has 
increased measurement noise, but no ambiguity issues. The increase in measurement noise from the 
narrowband mode is to some extent compensated by the corresponding increase in the wave signal. 

No user interaction is needed for the sensor to use the optimum Tx mode in wave measurement mode. 
The switching between the different modes is executed automatically. The wave solution for the 
SeaGuardII DCP uses the maximum beam speed during a wave recording interval in order to decide 
which broadband or narrowband mode that should be used for the next interval. Ref Figure 8-6. 
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Figure 8-6: Transmission pulse 

The transmission pulse is automatically adapted depending on the Sea State conditions. The purple line 
represents the mode used; mode 0 for the highly accurate broadband mode. When Hm0 reaches 
approximately 2m, the mode switch to broadband mode 1 and when Hm0 reaches about 4m, the 
instrument will switch to a robust narrowband mode with no practical speed limitations.  
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CHAPTER 9 Wave frequency bandwidth limitations and cut-off period 

The significant wave height is calculated as; 

 

, where  Eq.  9-1 

 

  Eq.  9-2 

 
Usually there is no significant energy for wave frequency above 0.5 - 0.6Hz. At 20 meters deployment 
depth the typical maximum frequency that can be measured by the SeaGuardII DCP Wave is 
approximately 0.33 Hz. In order to understand what this limitation means, Hm0 has been calculated based 
on the full bandwidth ocean spectra measured by the MOTUS ADHRS based sensor as reference. Then 
the bandwidth has been limited using three different values for the maximum frequency used in the 
calculation for the Hm0 . All significant values during a storm event are plotted in Figure 9-1below.  

 

Figure 9-1: Data collected with the MOTUS ADHRS sensor during a storm event 
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Data collected with the MOTUS ADHRS sensor during a storm event. The red line represents Hm0 
calculated when the frequency bandwidth is limited to 0.03 – 0.2 Hz (period from 5sec to 33sec) . The 
black line represents Hm0 calculated when the frequency bandwidth is limited to 0.03 – 0.3 Hz (period 
from 3sec to 33sec) and the blue line represents Hm0 calculated when the frequency bandwidth is limited 
to 0.03 – 0.7 Hz (period from 1.43s to 33s). The SeaGuardII DCP Wave at 20m will have a bandwidth 
limited to 0.03 – 0.3 Hz, equivalent to the black line. In the early grow phase of the storm event the 
differences are in general larger compared to the decay phase. This is due to the relatively strong 
amount of high frequency wind driven sea in the early phase, whereas the swell is dominating the wave 
spectrum in the decay phase.  

Figure 9-1 illustrates the consequences of a limited bandwidth. Hm0 could show consequent differences 
especially in presence of high frequency waves that are not measured by the SeaGuardII DCP Wave. 

 

 

Figure 9-2: Energy Spectrum 

The blue line represents an example of the energy spectra measured by the MOTUS sensor that covers 
the complete frequency domain. The red line represents the equivalent energy spectra observed by the 
SeaGuardII DCP Wave deployed at 20m depth: It shows the cut-off period of 0.33 Hz where as MOTUS 
can measure up to 0.7 Hz. 

 



April 2019 - TD 310 DCPS Theoretical Primer       Page 51 
 

 

 

Figure 9-3: Upper frequency limit versus depth 

The cut-off period will be influenced by the deployment depth. The shallower the SeaGuardII DCP Wave 
is deployed, the higher would the frequency limit be. 

 

Deployment depth 10m 20m 30m 40m 

Cut-off period (Hs) 3.12m 3.33m 4m 5m 

 

Table 9-1: Cut-off period (Hs) 
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CHAPTER 10 Wave direction 

In order to best measure waves, the measuring cell should be as close to the surface as possible. But it 
will also increase the distance between the samples performed by each one of the four beams and give 
sparser sampling of the waves in the horizontal plan (see Figure 10-1).  In other words, as the sensor 
is located at the bottom the horizontal spacing of the cells close to the surface will increase compared to 
the deeper ones.  

To correctly measure the wave direction, at least two samples per wavelength are needed which means 
that the cell location will influence the bandwidth of the directional spectrum. The upper frequency limit 
will be determined by the spacing between the cells which should be no more than k/2 where k is the 
wave number of the corresponding maximum frequency. But at the same time, in order to have proper 
signal to noise ratio, the cell should be sufficient close to the surface. 

For this reason the upper frequency limit used for wave height calculation will be slightly extended 
compared to the upper frequency limit used for wave direction. The sensor gives out several spectra; the 
frequency domain for both Energy Spectrum and Wave Direction Spectrum will be equal, but the 
maximum useful frequency for the directional spectrum will be provided as a separate output from the 
sensor.  

The cut-off period according to the deployment depth for the wave direction is: 

Deployment depth 10m 20m 30m 40m 

Cut-off period (Dir) 3.5m 4.4m 5.9m 6.6m 

 

Table 10-1: Cut-off period (Dir) 

 

 

 

 

 

 

 

 

 

 

Figure 10-1: Acoustic Wave Geometry 
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 Measuring closer to surface gives less noise, but reduces max frequency used for wave direction  

Figure 10-2: Background 

The orbital wave motion has both a vertical component, and a horizontal component. When we measure 
wave with an acoustic profiler we measure the orbital wave motion parallel to the acoustic beam 
direction. 

 

Figure 10-3: Beam geometry and orbital wave direction 
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Figure 10-4: Phase lags dependent on direction 

 

 

 

 

 

 

 

 

Figure 10-5: Horizontal component of wave orbital motion measured at beams will vary with 
direction 
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All orbital wave components [x,y,z]  at  B1 and the pointing vector of beam 1 
PB1[x,y,z]. 

 Eq.  10-1 

 

 Eq.  10-2 

 

  Eq.  10-3 

 

The beam speed measured due to the orbital beam speed can be found by calculating the inner product 
between the Beam pointing vector and the orbital beam speed components at the cell position of the 
beam of interest. 

 

 Eq.  10-4 
 

Let   and Eq.  10-5 

 

  then we can write the  Eq.  10-6 

 

 Eq.  10-7 
 

Similarly the beam speeds measured at each beam can be expressed as given in the equations below. 
These equations give the forward relationship between wave heights: 

 

  Eq.  10-8 
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 Eq.  10-9 
 

 Eq.  10-10 
 

  Eq.  10-11 
 

 

The vertical component is independent of wave direction, and will only depend on the wave height and 
the vertical off axis angle for each of the beams. At 0 degree tilt this angle will be 25 degree for all 
beams. The horizontal component of the orbital current will vary with direction, and will have a minimum 
when the waves are orthogonal to the beam pointing direction. In this case it will only receive the vertical 
component for this beam. The maximum value will be when the wave direction is in the same direction 
as the beam. 

The process of finding the wave direction is an inverse problem. The forward relation between the 
correlation of any two sensing cells is given by: 

 Eq.  10-12 

 

The directional spectrum  can be decomposed into a non-directional Energy spectrum, which 
gives the sum energy from all directions, and a Directional Spreading Function  that gives the 
distribution of the total wave energy. The Equation can then be rewritten as: 

 Eq.  10-13 

 

The transfer function Hm and its properties has already been discussed and is given in Eq. 10-8 and. 
Eq.10-9 Hm in Eq. 10-10 and Eq. 10-11 is dependent on frequency and direction , whereas in 
eq. 1 and 2 these are function of wavenumber and direction (2 Horizontal components). The dispersion 
relation gives the relation between the wavenumber and frequency as function of water depth. 

 

  Eq.  10-14 
 

By combining the cross and auto correlation from all beams, the E(f) and the  can be estimated. 



April 2019 - TD 310 DCPS Theoretical Primer       Page 57 
 

 

CHAPTER 11 Automatic cell location 

The sensor is normally situated at the seabed. Ideally the Energy spectrum and the wave height should 
be calculated at a cell selected close to the surface. This is due to the frequency dependent attenuation 
as discussed previously. In order to avoid side lobes hitting the strong surface reflector, the cell has to be 
located at least 10% of the depth below the surface due to the geometry. The distance from the sensor 
to the surface is approximately 10% shorter (cos(25)=0.906)  than along the beam pointing direction. In 
addition the lower part of the surface is approximately Hs below the average surface level. In addition to 
this there should be some safety margin to the surface. 

The automatic selection of cell location will vary with a number of parameters as given below. 

 

CellPos = Depth*(1 - cosd(25) )+ 2 + Hs ≈ 0.1*Depth + 2 + Hs Eq.  11-1 

 

The Hs is retrieved from the calculation of Hs from the previous record. The Depth value is retrieved from 
the previous pressure sensor depth calculation. 

The used cell depth can be output together with other wave and quality data if the data output is 
activated. 

  

 

 

 

 

 

Figure 11-1: Beam geometry and beam pattern concern to avoid surface reflection. 
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CHAPTER 12 Quality parameters 

 

 As described in earlier chapters, the transfer function is strongly dependent of the depth position of the 
measuring cell and the water depth. When this information is correct, the calculated wave height should 
be equal independent of the selected depth cell. This assumes that the bandwidth used for calculation of 
the significant wave height is equal for the different cells, and that the upper frequency used in the lower 
cell is sufficient low such that noise do not contribute to the significant wave height for the lower cell.  

The AWS sensor utilizes this feature as a quality parameter. It is possible to calculate the wave height for 
three independent depth cells. By comparing the data from these three cells, information related to the 
quality of the significant wave height will be revealed.  
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CHAPTER 13 Parameters calculation - mathematical formulas 

 

Significant wave height Hm0 is derived from the energy spectrum and is calculated based on the zero 
order moment. 

 

 Eq.  13-1 

 

  Eq.  13-2 

 

The significant wave height will be calculated based on the complete wave bandwidth, swell bandwidth 
and wind driven sea bandwidth. The separation frequency between wind driven sea and swell can be 
adjusted by the user. 

 

Peak Wave Period Tp is the wave period for each frequency band total/wind/swell that contains the most 
energy based on the Energy Spectrum E(f) (see below). 

 

The Peak Wave Direction  is the corresponding wave direction for Peak Wave Period Tp calculated 
for each frequency band total/wind/swell. This is a single value selected from the Mean Wave Direction 
Spectrum  see below. 

 

Mean wave period Tm02 is the wave period derived from the zero order and second order moments. 

 

 Eq.  13-3 

 

 

The Energy Spectrum E(f) gives the vertical wave energy density for each frequency bin, accumulated 
from all directions. 
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Two different directional Spectrums are calculated 

  

1. Mean Wave Direction Spectrum  is calculated as mean wave direction for each 
frequency bin in the spectrum based on the first order Fourier Coefficients. 

 

 

 Eq.  13-4 
 

2. Principal Wave Direction Spectrum  is calculated based on the second order Fourier 
Coefficients. The principal wave direction has an ambiguity direction of 180 degree, but is forced 
to be in the same interval as the mean wave direction.  
 

 

 Eq.  13-5 
 

The Wave Orbital Spectrum K(f) gives the ratio of vertical to horizontal motions corrected for the wavenumber 
and water depth 
 

 

 Eq.  13-6 

where:  

C11(f), C22(f), and C33(f), are the cross-spectra of displacement in Vertical, East and North direction. 
k(f), is the wave number and h is the water depth. 

 
 

Wave Mean Direction  is the energy weighted mean direction over all frequency bins.  

  Eq.  13-7 
 

 

The spreading angle is a measure of how wide the directional cone is over which the wave direction is 
distributed (Kumar and Anoop, 2013).  
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Three different spreading parameters are calculated. These parameters can be calculated as spectrums, 
but only the value for the peak period is calculated directly on the sensor. If the complete spreading 
spectrums are needed, the spreading parameters have to be calculated based on the sensor derived 
Fourier Coefficients. 

 

1. The Directional width  (First order Spread) is a measure of directional spreading based on the 
first order Fourier coefficients, calculated for the frequency corresponding to the peak in the 
directional energy spectrum Kuik et al. (1988).  

 

,   Eq.  13-8 

 
 

2. The Mean spreading angle  is the spreading function based on the first and second order 
Fourier coefficients, calculated for the frequency corresponding to the peak in the directional 
energy spectrum 

 

 Eq.  13-9 

 

 

3. The long crestedness parameter  gives the normalized spreading function, calculated for the 
frequency corresponding to the peak in the directional energy spectrum.  

 Eq.  13-10 

 

For long-crested waves the direction of all wavefronts are the same and the spreading function reaches 
0. When the wave fronts no longer are uniform and the become more spread, the length of the wave 
crests will be shorter and the Long Crestedness parameter will increase.  

 

Fourier Coefficients Spectra A1, B1, A2, B2 

 

These parameters can be used for post processing purpose. Together with the Energy Spectrum E(f) a 
number of other parameters can be calculated including all sensor derived parameters. 
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First Order Spread,  (Directional width) is a measure of directional spreading based on the first order 
Fourier coefficients, calculated for the frequency corresponding to the peak in the directional energy 
spectrum Kuik et al. (1988).  

 

,   Eq.  13-11 

 
Displacement data should be processed on board to produce wave spectral data which shall then be 
given over a number of frequency bands covering the range of 0.03Hz to 0.6Hz. This range should be 
covered by no more than 40 frequency bands. 

As an example the presently used spectral bands are as follows: 

 

MOTUS wave sensor uses 4Hz sampling frequency and 1024 point FFT. This results in 256 frequency 
bins covering the frequency band from 0 – to 2Hz. The Motus sensor selects the frequency bins in the 
range [8 - 180]  corresponding to a centered bin frequency range of f = [0.0273, 0.695]  Hz. All spectrums 
generated by the MOTUS wave sensor will have this frequency resolution. 

 

In order to reduce the number of frequency bins an average could be performed as post processing. If 
this average should be done within the sensor an additional firmware upgrade would be required. 
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