Aanderaa Instruments develops and manufactures a large variety of sensors for the 3010 based measuring system. All these sensors have the standard Aanderaa output, VR22 or SR10, and can be connected directly to the system. If a sensor with another output is to be used, the Signal Converter 3119 will interface the sensor with the system.

The converter is molded in scotchcast with an aluminum cover. This, together with the watertight input and output receptacles, makes the unit well suited for use in a harsh environment.

A version for 0-20mA input signals, designated 3119B, is also available. Contact the factory for more information.
SPECIFICATIONS FOR SIGNAL CONVERTER 3119

Input Signals: DC voltages. Available ranges see below

Output Signal: SR10

Accuracy: ±0.2%

Input Protection: Maximum 16V (Transorber SA16)

Isolation Ability: Input/Output >1000V

Supply Voltage: 8 to 14 volt (supplied by the Datalogger or Reading Unit). Positive ground

Current Drain: 1mA average during control voltage period. Quiescent: 10µA

Operating Temperature: -40 to +50°C

Electrical Connection: 6 pin receptacle mating Cable 3484 and 2842

Material and Finish: Aluminum, hard anodized 10-15µ

Weight: 300 grams

Dimensions: 178 x 48 x 32 mm

Packing: Cardboard box

Accessories (included):
- For input signal: Connecting Cable 3484N, 1.2m

Accessories (not included):
- For output signal: Cable 2842 between 3119 and Datalogger. Specify length

Warranty: Two years against faulty materials and workmanship

RANGE SELECTION

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>Wiring of cable 3484</th>
<th>Cable Color code</th>
<th>Input Impedance</th>
<th>Calibration Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2V</td>
<td>Positive to Green</td>
<td>>1GΩ</td>
<td>A:</td>
<td>B:</td>
</tr>
<tr>
<td></td>
<td>Negative to Brown</td>
<td></td>
<td>C: 0</td>
<td>D: 0</td>
</tr>
<tr>
<td>0 – 5V</td>
<td>Positive to Green</td>
<td>>100kΩ</td>
<td>A:</td>
<td>B:</td>
</tr>
<tr>
<td></td>
<td>Negative to Brown and Blue</td>
<td></td>
<td>C: 0</td>
<td>D: 0</td>
</tr>
<tr>
<td>0 – 10V</td>
<td>Positive to Green</td>
<td>>100kΩ</td>
<td>A:</td>
<td>B:</td>
</tr>
<tr>
<td></td>
<td>Negative to Brown and Red</td>
<td></td>
<td>C: 0</td>
<td>D: 0</td>
</tr>
<tr>
<td>0 – 15V</td>
<td>Positive to Green</td>
<td>>100kΩ</td>
<td>A:</td>
<td>B:</td>
</tr>
<tr>
<td></td>
<td>Negative to Brown and White</td>
<td></td>
<td>C: 0</td>
<td>D: 0</td>
</tr>
</tbody>
</table>

Use formula $V_{DC} = A + BN + CN^2 + DN^3$ for converting raw data to engineering units. N = raw data read by the Datalogger.