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Aanderaa Oxygen Optodes 

Best Practices for Maintaining High Data Quality 

This document gives recommendations on field adjustments of oxygen optodes. 

Done correctly a one or two-point adjustment of an optode will give it almost the same 
accuracy as when it was factory calibrated. By following these procedures end-users should 
be able to maintain high accuracy and documented data quality themselves. 

Below two different methods are suggested. 

Adjustment of saturation calibration in air-bubbled water: The example given is from the 
Swedish Aquanet project in which about 100 Aquaoptode (model 4531) were used at five 
field stations for five months in targeted mesocosm studies. 

Aanderaa optodes are stable and normally becomes better over time. Do not change foils 
unless mechanically damaged. During the initial months of storage/use a Foil maturation 
process occurs resulting in lower readings by several %. The maximum observed maturation 
induced drift on more than 1000 sensor has been 8 % for sensors with non-factory pre-
matured WTW foils (model: 4835, 4531 and 5730 Steinsvik) and 6 % for sensors with factory 
pre-matured PSt3 foils (model: 4330, 4831, 5331 hadal). During/between field deployments 
there are possibilities for end users to post-adjust the sensors either by a one-point air-
saturation adjustment or by taking reference samples (e.g. water samples and Winkler 
titration) and/or using a well-calibrated sensor in parallel. If done correctly such an 
adjustment should result in an absolute accuracy of around 1 % for multipoint calibrated 
sensors (model: 4330, 4831, 5331 and 5730) and 3 % for two-point calibrated (model: 4835, 
4531), see below for more information about factory calibrations. The drift will decrease over 
time so that during the second year it is not likely to be more than 1-2 %. After this it should 
be less than 0.5 % per year, unless the foil is mechanically damaged. 

Saturation adjustment: After the first year of Aquanet experiments, 16 optodes from one of 
the sites were immersed into an open tank filled with air-bubbled freshwater and left there to 
record for several days (Fig. 1). It is important that the aquarium pump takes in air from an 
open atmosphere outside, not from inside 
the room/laboratory where O2 levels will be 
affected by the on-going activities and/or 
the ventilation. To verify that optodes are in 
saturated water you can take them up from 
the water and hold them just above the 
surface for a few minutes. There should 
then be no change in the saturation 
readings. 

Fig. 1: Sixteen (16) optodes immersed into 
air-bubbled freshwater for post-deployment 
calibration check. 

https://www.aanderaa.com/media/pdfs/newsflash-2018-no-1-aquanet-project.pdf
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Fig. 2: Saturation readings from 16 optodes in air-bubbled freshwater (lower panel) and 
variations in local air-pressure (blue curve) and the calculated related air saturation levels 
compensated for the height above sea level (red curve) during an 8-day period. It should be 
noted that there is a 0.1-0.5 % difference when air-pressure changes from low-to-high 
compared to when it changes from high-to-low. The reason for this is an adaptation delay in 
the water mass in the tank. The smaller and better stirred/bubbled the water volume around 
the sensors is, the faster the water will reach equilibrium when air-pressure and/or 
temperature change(s). 

The 16 optodes read between 4.1-6.5 % low and should be individually compensated by 
multiplying the readings by a factor of 1.041 for the sensor that reads the highest and 1.065 
for the sensor that reads the lowest.  

Adjustment of saturation calibration in air: The method suggested above gives high 
quality one-point adjustments but can be time consuming. A simpler field method, inspired 
by in-air calibrations on Argo floats and gliders (Bittig & Körtzinger, 2014; Johnson et al., 
2015; Nicholson & Feen, 2017; Bittig et al., 2018) could be used during measurement 
campaigns but could render lower quality if the optode foil is not wet or the temperature at 
the foil is different from the one at the temperature sensor. 

Simply let the optode(s) log outside in free air for several hours before and after the 
deployments and note the average air-pressure. 

Preferably the recordings should be done during the night when air is normally moister and 
temperature is lower and more stable. 

At sea level at standard air pressure (101.3 kPa = 1 Atm = 14.69 psi) the sensors should 
show 100 % if wet and 102 % if completely dry and at an air pressure of 100 kPa it should 
show (1.3/101.3)*100 = 1.3 % lower.  
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The example below is from a SeaGuard instrument (measuring currents, mooring 
movements, particles, O2, temp, salinity and depth) that is in continuous deployment in the 
Mediterranean Sea (E2-M3A observatory) at 1250 m depth. The instrument was logged in 
air before and after every deployment (Fig. 3). It was found that the oxygen optode was 
showing 9 % too low but that it did not drift over the 4-year deployment period that is 
reported on here. Also, pressure data from the deep water rated pressure sensor indicated 
that there was no drift since it was tracking with air-pressure in-between deployments. 

 

Fig. 3: Simple field quality control letting the instrument log in air. The example shows quality 
control of the pressure sensor and the oxygen optode mounted on the SeaGuard. 

Adjustment of zero (0) readings:  To maintain high accuracy when using sensor in low 
oxygen environments also the zero calibration can be checked but normally its drift is 
minimal. 

The sensor then has to be immersed into an environment with zero oxygen until the readings 
stabilize at low, close to 0 %. Please observe that plastic sensors and containers will take 
longer to reach low levels because plastics absorb or dissolve oxygen that can contaminate 
the surroundings. Methods that can be used include that the sensors could be put into a 
plastic bag filled with e.g. N2 gas or immersed into zero oxygen water where oxygen was 
removed chemically (e.g. sodium sulphite, Na2SO3), biologically (put yeast and sugar in body 
warm water and all O2 will be consumed). Also boiling or bubbling water with e.g. N2 gas will 
create low O2 water but it is difficult to be sure that its O2 concentration is absolutely zero. 

If a 0 % O2 check is done this compensation could also be added/subtracted. If the sensor 
reads e.g. +0.2 μM in N2gas/anoxic water -0.2 μM should be subtracted from the data. To 
facilitate calculations we have made an Excel sheet that also gives the text strings to be 

O2 saturation (%) 91.5 % in air 89 % in air 

Pressure Water (kPa) 

2014 2015 2016 

Field Quality Control O2: +9 %; No drift, No hysteresis 

Pressure Air (kPa) 

1006 mbar in air 999 mbar in air 1012 mbar in air No air data 

Field Quality Control Pressure: No drift, No hysteresis 

2017 

No air data 91 % in air 

https://www.aanderaa.com/productsdetail.php?Seaguard-RCM-30
http://nettuno.ogs.trieste.it/e2-m3a/
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transferred to the sensor in case a terminal emulator software program is used (see 
instructions below). 

Correcting sensor readings: There are two ways to correct the readings: A. Externally: By 
applying the correction factor(s) as a post-compensation or in real time by the software that 
logs and presents the incoming data. B. Internally: By serially (RS232) connecting the 
sensors to a PC and change the factor internally. This factor can be changed by using the 
dedicated Aanderaa software (RT collector) or by sending commands from a terminal 
emulator software program (e.g. Tera Term, HyperTerminal). Instructions for how to do both 
are given below in appendix 1 and 2. 

Recommendations: It is recommended to do an air saturation quality check of oxygen 
optodes before and after long deployments. 

Please keep records of how sensors mature over time. It will help detect when a sensor 
starts to behave abnormally. 

Sensors should be cleaned before storage and stored with black caps on including some tap 
water, or with a piece of wet cotton taped against the foil. If sensors are stored dry the foil 
will dry out which could lead to 1-2 % lower readings. The sensor then needs to be placed in 
water to hydrate at least 24 h prior to starting filed measurements again. The storage 
temperature is not important. 

Antifouling: Biological fouling is a major impediment for long-term monitoring in shallow 
water. For antifouling protection of e.g. Aanderaa sensors different solutions have been 
successfully applied including: 

1. Zebratech wipers have been protecting Aanderaa Turbidity, O2, and pCO2 
sensors/optodes (Fig. 4). With a SeaGuard/SeaGuardII/SmartGuard one of the 
analog channels can be used to activate a wiper or UV leds. The "warm-up time for 
the sensor" is used to turn on the wiper/UV for a desired time period. You should set 
it up with a delay so that it is not wiping/shining sensors when the measurements are 
done.  

2. Copper tape (e.g. 3M 1181) or Copper/Nickel (last much longer) are easy antifouling 
solution (Fig. 4). When applying the tape please be careful so that there is no contact 
between the tape and other metal parts. Then the tape will loose its antifouling 
properties.  

3. UV leds in combination with copper tape (Fig. 4) have turned out to be efficient for 
long (year) deployments on costal observatories. The downside of UV LEDs is that 
they consume relatively high amounts of power. Please contact Aanderaa to get 
more detailed recommendations. 

4. Electro-chlorination has been successfully applied to Aanderaa and other 
manufacturers sensors in multiple applications conducted by IFREMER. 

5. Ongoing trials: Aanderaa is continuously searching for and testing new combinations 
of antifouling methods. The focus is on non-toxic methods like fiber/hair cloth and 
“shark skin” film. 

Please contact us to obtain more detailed recommendations and information. 

  

http://www.zebra-tech.co.nz/hydro-wiper/
http://www.amloceanographic.com/Products-Services-Hydrographic-Oceanographic/Biofouling-Control_3
http://www.amloceanographic.com/Products-Services-Hydrographic-Oceanographic/Biofouling-Control_3
https://www.ocean-sci.net/6/503/2010/
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6.  

Figure 4, Left: Wiper protecting of a pCO2 optode against fouling, wiping is activated by one 
of the four SeaGuard analog ports. Middle left: multi-parameter instrument with copper tape 
on some parts after 2 months in an area with high biofouling. The copper tape last for about 
1 year and nothing grows on it. Middle right: Close-up of the Turbidity and O2 optode both 
measured correctly for 1 and 2 months respectively. Right: Conductivity and O2 optode on 
SeaGuard were successfully bio fouling protected by UV-LED’s during the active season. 

References: 

 Bittig H. & A. Körtzinger (2015) Tackling Oxygen Optode Drift: Near-Surface and 
In-Air Oxygen Optode Measurements on a Float Provide an Accurate in Situ 
Reference. Journal of Atmospheric and Oceanic Technology, 32, 1536-1543. 

 Bittig H.C., A. Körtzinger, C. Neill, E. van Ooijen, J.N. Plant, J. Hahn, K.S. 
Johnson, B. Yang & S.R. Emerson (2017) Oxygen Optode Sensors: Principle, 
Characterization, Calibration and Application in the Ocean. Frontiers in Marine 
Science, in press. 

 Johnson K.S, J.N. Plant, S. Riser & D. Gilbert (2015) Air Oxygen Calibration of 
Oxygen Optodes on a Profiling Float Array. Journal of Atmospheric and Oceanic 
Technology, 32, 2160-2172. 

 Nicholson D.P. & M.L. Feen (2017) Air calibration of an oxygen optode on an 
underwater glider. 15.5, 495–502. 
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Aanderaa optode models and their calibrations 
Common features: Very well characterized (+150 scientific papers). Extreme stability. High 

quality temperature sensor. Red reference LED. Stern-Volmer Uchida formulas. Output 

calibrated values in µM, % saturation and raw data. Dynamic Range: 0-300 % (higher range 

at request). Calibration range: 0-120 % (higher range at request, special calibrations have 

been provided for 0-500 %). Response time (63 % in water) standard foil t63<25 s and fast 

foil t63< 8 s (only for model 4330, 4831 and 5331). Resolution/Precision better than 0.1 µM. 

 
 

 

 

 

 

 

Fig. 4: Aanderaa offers five optode models: A. 5730: 40-point calibrated, WTW foils*, flush 

mounted, aquaculture cameras, serial output. For OEM sales, restriction apply, please 

contact us. B. 4531: 2-point calibrated, WTW foils*, 100 m rated, various connector options, 

shallow water/aquaculture, serial+analog (V/mA, 2 channels) output. C. 4835: 2-point 

calibrated, WTW foils*, 300 m rated, coastal, serial+AiCaP** output. D. 4330: 40-point 

calibrated, pre-matured PreSens foils***, 3000/6000/12 000 m rated, high accuracy/deep 

water, serial+AiCaP** E. 4831: 40-point calibrated, pre-matured PreSens foils***, 

3000/6000/12 000 m rated, high accuracy/deep water/3d party platforms, 8-pin SubCon 

connector, serial+analog (V/mA) output. 

* WTW FDO 701: WTW is a Xylem company that offers high quality instrumentation for 

laboratory and wastewater application. Their O2 optode foils are stable and exceptionally 

robust against the mechanical wear that often occurs in shallow water application. 

** AiCaP: AiCaP: is a modified CAN bus based master-slave communication protocol 

standard available on most of Aanderaa's smart sensors. AiCaP makes plug-and-play 

connection, to as many (+40) sensors, possible when connected to an Aanderaa logger or 

Hub directly and remotely using a single seven wire cable. This is practical in all multi-

parameter applications e.g. strings, buoys, ferry boxes, autonomous platforms. 

***PreSens PSt3 foils: used on our high accuracy/deep water optodes. These foils are stable 

and very well characterized for oceanographic use in more than 20 scientific papers (see 

Bittig et al., 2018 for a recent summary). Used on Aanderaa optodes in thousands of 

applications since 2002. To minimize initial drift the foils are pre-matured before doing the 

40-point calibration, which today is standard for 4330 and 4831. A fast responding version is 

available (t63< 8 s). The fast foils were upgraded from July 8, 2018 (model 4330 s/n 2994) 

A

  

B

  

C

  

D

  

E

  

https://www.wtw.com/en/home.html
https://www.aanderaa.com/productsdetail.php?Aanderaa-SeaGuard-String-31
https://www.aanderaa.com/newsdetail.php?Surface-water-measurements-from-mobile-platforms-75
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and April 5, 2018 (model 4831, s/n 737) with foils that has the same low noise level as the 

standard foils and it is less sensitive to direct incoming sunlight (compared to the previous 

version fast foils). 

It should be emphasized that the foils used on Aanderaa oxygen optodes become more 

stable over time. The longest operating optodes were delivered in 2002 and most of these 

still use the original foils.  Therefore foils should not be changed unless they are 

mechanically damaged. By following the recommendations in this Best Practice 

document it is possible for end users to keep sensors operational for many years at a 

high level of accuracy without the necessity for overhaul and calibration by Aanderaa.  

Two-point calibrations: The two-point calibrations (Accuracy ±5% or ±8 µM) are based on 

a common characterization of a production batch (normally 100) of sensing foils with an 

additional two-point adjustment for every optode. The two-point calibrated sensors, 4531 and 

4835 (see above) are calibrated at 10°C for 100% saturation, and at room temperature 

(22°C) for the 0% point. For referencing at 100 % saturation three (3) 40-point calibrated 

optodes (absolute accuracy better than  ± 1 %) are used. The calibration of these is back 

traceable to regular checks in one of our multipoint calibrations tanks, which are regularly 

verified by water samples analyzed by Winkler titration.  

Multipoint calibrations: For application demanding higher accuracy (±1.0 % or ±2 µM) an 

individual multipoint calibration was optional for the 5730, 4330, 4831 and 5331 optodes 

from 2012. Since January 1, 2018 it is automatically included without extra cost for all deep-

water 4330, 4831 and 5331 models that use PreSens foils. The foil pre-maturation process 

is standard before calibration. This process removes the initial drift in new foils and brings 

them to a state where the drift is typically 0.025% per 100,000 measurements. 

Fig 5 Left: One of three multipoint calibration systems in operation at Aanderaa. Middle: 

Detail of multiple sensors inside the temperature regulated bath. Right: Regular control of 

the 3 reference optodes is done with Winkler titration using an automatic titration system 

from SI Analytics (a Xylem company). 
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After pre-maturation the optodes are placed in one of the specially designed automatically 

controlled temperature-regulated baths where the oxygen saturation is changed by diffusing 

different mixtures of O2 and N2 into the water. The gas mixture is controlled by use of high 

accuracy Mass Flow Controllers. The water is stirred vigorously to provide homogeneity and 

oxygen concentration is measured by three reference optodes that are fully calibrated (40 

points) by water sampling and Winkler titration one time per year. For continuous control 

water samples are also taken every month and analyzed by Winkler titration. 

Aanderaa has participated, with good results, in an international inter-comparison in which 

the performance of different leading oxygen calibration laboratories (in Australia, France, 

Germany, USA, Japan and Norway) were evaluated. These laboratories are mainly focusing 

on high accuracy calibrations of oxygen optodes for Argo floats and gliders. If of interest 

please contact us for more information about this work. 

Based on the calibration data seven coefficients (c0 to c6) in the modified Stern-Volmer 

formula derived by Uchida et al, 2008 [17] are calculated: 

[𝑂2] =
(

𝑃0

𝑃𝑐
− 1)

𝐾𝑆𝑉
 

and: 

𝐾𝑆𝑉 = 𝑐0 + 𝑐1𝑡 +  𝑐1𝑡2 

𝑃0 = 𝑐3 + 𝑐4𝑡 

𝑃𝑐 = 𝑐5 + 𝑐6𝑃𝑟 

where t is temperature (°C) and Pr is the raw phase shift reading (TCPhase) 

After the calibration sequence the performance of all sensors are verified in 20 points 

covering the complete calibration range. For an example see Fig. 6, below. 

 

mailto:Anders.Tengberg@xyleminc.com?subject=More%20info:%20High%20accuracy%20oxygen%20optodes%20performance%20-%20international%20inter-comparison
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Fig. 6: A: Targeted calibration points for a standard 40-point calibration. Please note that 
optodes are more sensitive at lower concentrations. B: 3D plot of residuals during the 40-
point calibration. C: Residuals at the 20-point check that is done directly after the calibration. 
A full calibration with check is automatic and takes 48 h.  
 

Our experience from delivering thousands of optodes over more than 15 years is that optical 

oxygen sensors are non-linear both in response to oxygen and to temperature. In addition 

their sensing foils, optics and electronics can differ. It is therefore our strong opinion that 

individual multipoint calibrations are necessary to achieve the highest accuracy through the 

lifetime of the sensor. In Bittig et al (2018) similar recommendations are also given: 

Depending on the kind of optode calibration, handling and usage scenario, accuracy of O2 

measurements can vary considerably (from 1 hPa to more than 20 hPa, see Fig. 11, in 

Bittigs paper, for PSt3 foil optodes). To achieve highest accuracy, each sensor requires an 

individual multi-point calibration in T-and O2-space at least once during its lifetime. Foil batch 

calibrations fail to achieve such high accuracy. 

Be Aware of How Different Manufacturers Give Specifications:  

Different manufacturers specify the performance of their sensors differently. It is worth taking 

this into account when comparing sensor specifications. 

When Aanderaa states an absolute accuracy of e.g. (±1 % or ±2 µM), we mean the accuracy 

of the sensor in the field over the entire range of oxygen concentrations and temperatures. 

Another manufacturer might mean the laboratory accuracy just after calibration or in some 

cases how well the sensor returns to the exact same point as it was calibrated in right after it 

was calibrated. If specified in this way, our accuracy would be approximately ±0.5 %. 

When Aanderaa states a 63 % response time of 25 s for the non-transparent foil and 8 s for 

the faster responding transparent foil, we mean the response time in water at 20°C. Other 

manufacturers give the response time of their sensors in air. If we were to specify in this way 

our 63 % response time would be approximately 6 s for the non-transparent foils and 3 s for 

transparent foils. 

Our philosophy is to give specifications, which reflects the field performance of our sensors. 

We are convinced that this way of specifying is more valuable for the end user. 
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 Scientific papers using Aanderaa optodes 
 (Only first authors listed, full references in list, updated July 2018.) 

Commercially available oxygen optodes for oceanographic application were introduced by 
Aanderaa in 2002. The proven long-term stability (years) and reliability of these sensors 
have revolutionized oxygen measurements and several thousand are in use in applications 
ranging from streams (Birkel 2013) and buried in the river bed (Malcolm 2006,2009,2010, 
Vieweg 2013) to the deepest trenches (12 000 m) on earth, from aquaculture (Thomas, 
2017) to wastewater, from polar ice (Mowlem 2013, Bagshaw 2016) to earthquake areas 
(Oguri 2016). This document gives examples of published scientific investigations in which 
Aanderaa optodes have played a central role. 
The basic technique and an evaluation of its functioning in aquatic environments were 
presented in Tengberg (2006), Bittig (2014,2015A,2018). Other studies include use on 
autonomous floats Joos (2003), Körtzinger (2004,2005,2008), Kihm (2010), Koelling (2017), 
Johnson (2009,2010,2015), Alkire (2012), Bittig (2015B,2017), Bushinsky (2016), Fiedler 
(2013), Takeshita (2013), D'Asaro (2013), Nikolov (2015), Plant (2016), Wolf (2018), Sarma 
(2018) on gliders (Nicholoson 2008,2017, Karstensen 2015, Pizarro 2016, DeYoung 2018, 
Queste 2018) on Autonomous Underwater Vehicles (Clark 2013), animal-borne (Baileul 
2015), autonomous sail buoy (Ghani 2014), long-term monitoring in coastal environments 
with high bio-fouling (Martini 2007), on crab pots (Shearman 2012), on coastal buoys 
(Jannasch 2008, Johnson 2010, Bushinsky 2013), on Ferry box systems (Hydes 2008,2009, 
Hartman 2014), on cabled CTD instruments for profiling down to 6000 m including 
suggestions for improved calibrations, pressure effect and compensation for slow response 
(Uchida 2008) and in chemical sensor networks (Johnson et al 2007). In the Hypox project 
multiple optodes were used on multiple platforms to study Hypoxia (Friedrich 2013). Lo Bue 
(2011) pointed at potential artifacts in oxygen readings in environments with low currents. It 
has been found that the lower readings are caused by oxygen consumption occurring when 
metals are corroding (e.g. one sacrificial Zn anode with a weight of 130 g can consume all 
oxygen in 700 l of water). In Bittig et al. (2012) a seagoing multipoint Winkler free optode 
calibration system is described and used. McNeil (2014) suggested calibration methods 
based on physical properties of the sensing foil. Drazen (2005) presented a novel technique 
to measure respiration rates of deep sea fish and Sommer (2008) described an automatic 
system to regulate oxygen levels and to measure sediment-water fluxes during in-situ 
sediment incubation at vent sites. Wikner (2013) measured respiration rates of oligotrophic 
waters and pointed out potential artifacts from oxygen dissolved in plastic incubators and 
Rabouille (2009) benthic O2 consumption. Also Pakhomova (2007), Almroth (2009,2012), 
Viktorsson (2013), Cathalot (2012), Caprais (2010), Noffke (2016), Niemisto (2018), Sommer 
(2009,2016,2017) used the same type of optodes on autonomous landers to perform 
sediment-water incubations on natural and fish farm affected sediments and with and without 
the introduction of sediment resuspension. In Wesslander (2011) the dynamics and coupling 
of carbon dioxide (CO2) and oxygen weres investigated in coastal Baltic Sea waters and 
McGillis (2011) described a novel method to assess the productivity of coral reefs using 
boundary layer and enclosure methods. Champenois (2012) studied variations in community 
metabolism rates of a Posidonia oceanica seagrass meadow by continuous measurements 
of oxygen at three different levels during three years. Viktorsson (2012) used yearlong 
oxygen measurements at several Gulf of Finland locations to calibrate a 3D model for 
prediction of bottom water oxygen dynamics and the subsequent coupling of low oxygen 
conditions to release of sediment bound phosphorous. In Atamanchuk (2014,2015A,2015B) 
and Peeters (2016) pCO2 optodes were described and used in parallel with O2 optodes to 
study biogeochemical processes in fjords, lakes and at Carbon Capture and Storage. Glud 
(2016) studied nutrient turn-over and mineralization in a Scottish loch and Hamme (2015) O2 
and N2 dynamics in the Saanich inlet. 
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Testimonials of Aanderaa optode stability: Aanderaa oxygen optodes have been 

used in numerous scientific studies published in peer-reviewed journals (see appendix 1 
below for full references). Some of these studies focused on details in the performance of 
the Aanderaa optodes (see references and citations above): 

 Joos et al (2003): ”Initial field tests have shown exceptional sensitivity and excellent 
stability (A. Körtzinger and D.W. R.Wallace, University of Kiel,unpublished data, 
2002). The new technology seems well suited to deployment on long-term in-situ 
moorings, profiling floats, and other autonomous platforms.” 

 Körtzinger et al (2004): “The initial results from the first six months of operation are 
presented. Data are compared with a small hydrographic oxygen survey of the 
deployment site. They are further examined for measurement quality, including 
precision, accuracy, and drift aspects. The first 28 profiles obtained are of high 
quality and show no detectable sensor drift.” 

 Nicholoson et al. (2008): “The optode sensor showed no sign of drift when 
compared to Winkler measurements over the nine months of deployment. Seaglider 
021, equipped with the same optode sensor, was stable from its initial February 
deployment through the end of its second deployment in November, without requiring 
any recalibration between deployments (data not shown). The optode on glider 020 
showed similar stability over its shorter deployment.” 

 Jannasch et al. (2008): “Oxygen optode (Aanderaa, 3930). Similar to nitrate, oxygen 
concentrations within estuaries can vary widely (0 to 400 μM O2). We have found the 
optode to be resistant to fouling as previously suggested (Tengberg et al. 2006) and 
to be extremely stable. Sensors were calibrated prior to deployment using the 
factory-suggested, two-point calibration. There was no noticeable drift in instrument 
accuracy before and after deployment”. 

 Hydes et al. (2009): “The optodes maintained good stability with no evidence of 
instrumental drift during the course of a year. Over the observed concentration range 
(230–330 mMm-3) the optode data were approximately 2% low in both years. By 
fitting the optode data to the Winkler data the median difference between the optode 
and Winkler measurements is reduced to less than 1 mMm-3 (0.3%) in both years.” 
Comment: Measurements were done every 30 s. Sensors were operated one year at 
a time, which equals more than 1 Million samples.  

 Johnson et al. (2010): “The oxygen sensor shows no evidence of drift, but it seems 
to have a small accuracy bias (≤10 μmol/l), as reported for earlier applications of 
Aanderaa Optode sensors on profiling floats and gliders.” The deployment period 
was more than 600 days. 

 Champenois and Borges (2012) “The comparison of O2 measured by optodes and 
by Winkler titration allowed us to determine the accuracy of O2 measurements by 
optodes, which was better than ±2.0 mmol kg-1. The accuracy was not significantly 
different among the three O2 optodes and remained stable during the study period. 
The precision of O2 measurements by the O2 optodes was better than ±0.1 mmol kg-

1, based upon the standard deviation on the mean of 30 measurements during 30 s, 
which is the standard configuration of measurements used.” Comment: The 
deployment period was more than 1100 days. Sensors were logged hourly which 
equals approximately 26,000 samples. 

 Johnson et al. (2015): “Aanderaa optode sensors for dissolved oxygen show 
remarkable stability when deployed on profiling floats, but these sensors suffer from 
poor calibration because of an apparent drift during storage (storage drift). Comment: 
In this paper results from 47 floats were presented and methods for in air calibration 
on Argo floats suggested.  
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Appendix 1: Enter a foil adjustment into the sensor using Real-Time 

Collector 
Serially connect sensor to computer and power (one USB connector on the 3855 cable is to 

give power, 5-14 V, to the sensor) and start Real-Time Collector. Please observe that the 

quality of USB to Serial convertors is variable. Some work well and some are unreliable/do 

not work at all. From investigations we have found that KEYSPAN convertors work reliably 

on different computers with different operating systems.  
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Appendix 2: Enter a foil adjustment into the sensor using terminal 

software 
Different types of freely available software exist to communicate and change settings in 

sensors that use serial communication. One example is Tera Term. Below you will find step 

by step how to enter, communicate and change settings of Aanderaa smart sensors using 

the Tera Term software. For another terminal software the procedures should be similar. 

Serially connect sensor to computer and power (one USB on 3855 cable is to power the 

sensor with 5-14 V) and Start Tera Term. Please observe that the quality of USB to Serial 

convertors is variable. Some work well and some are unreliable/do not work at all. From 

investigations we have found that KEYSPAN convertors work reliably on different computers 

with different operating systems. 
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