Since oxygen is involved in most of the biological and chemical processes in aquatic environments, it is a crucial parameter to measure. Oxygen can also be used as a tracer in oceanographic studies. Aanderaa revolutionized oceanographic oxygen monitoring/research with the introduction of oxygen optodes in 2002. Applications range from shallow creeks to the deepest trenches, from tropical to in-ice/in-sediment measurements. More than 150 scientific papers have so far been published using these Aanderaa optodes.

These sensors are based on the ability of selected substances to act as dynamic fluorescence quenchers. The fluorescent indicator is a special platinumporphyrin complex embedded in a gas permeable foil that is exposed to the surrounding water. This sensing foil is attached to a sapphire window providing optical access to the measuring system from inside a watertight housing. The sensing foil is excited by modulated blue light; the sensor measures the phase of the returned red light. For improved stability the optode also performs a reference phase reading by use of a red LED that do not produce fluorescence in the foil.

The sensor has an incorporated temperature thermistor which enables linearization and temperature compensation of the phase measurements to provide the absolute O_2-concentration. The lifetime-based luminescence quenching principle offers the following advantages over electro-chemical sensors:

- Less affected by fouling
- Measures absolute oxygen concentration without repeated calibrations
- Excellent long-term stability
- Less affected by pressure
- Pressure behaviour is predictable
- Faster response time

The oxygen optode outputs data in AiCaP CANbus and RS-232. The sensor can present the O_2 concentration in µM, the air saturation in % and the temperature in °C.

The SeaGuard/SmartGuard datalogger and the Smart Sensor are interfaced by means of a reliable CANbus interface (AiCaP), using XML for plug and play capabilities.
Specifications

Temperature:
- Range: -5 to +40°C (23 - 104°F)
- Resolution: 0.01°C (0.018°F)
- Accuracy: ±0.03°C (0.18°F)
- Response Time (63%): <2 sec

Output Parameters:
- O₂-Concentration in µM, air saturation in %, temperature in °C, oxygen raw data and temperature raw data

Response Time (63%):

- With fast response foil: <8 sec
- With standard foil: <25 sec

Sensing Foil Considerations

The standard sensing foil is protected by an optical isolation layer which makes the foil extra rugged and insensitive to direct sunlight. The fast response sensing foil is not equipped with this layer; ambient light intensity higher than 15000 lux may cause erroneous readings. To avoid potential bleaching the fast response foil should be protected from ambient light when storing the sensor. We recommend the standard foil in applications where fast response time is not needed.

Typical validation at 20 points after calibration

Misleading specifications

When Aanderaa states an absolute accuracy of e.g. ±1.5% or ±2 µM) we mean the accuracy of the sensor in the field over the entire range of oxygen concentrations and temperatures, others might refer to accuracy in the laboratory just after the sensor was calibrated. When Aanderaa give response time in water others refer to response time in air which is much faster. For more information read our Best Practice document on Oxygen Optodes.

Specifications subject to change without prior notice.

Typical validation at 20 points after calibration

© 2019 Xylem. All rights reserved. Aanderaa is a trademark of Xylem or one of its subsidiaries. D378 OXYGEN SENSOR 4330_4330F Jan 2020

www.aanderaa.com

Aanderaa Data Instruments AS
Sanddalsringen 5b
P.O. Box 103 Midtun
5843 Bergen, Norway
Tel +47 55 60 48 00
Fax +47 55 60 48 01

© 2019 Xylem. All rights reserved. Aanderaa is a trademark of Xylem or one of its subsidiaries. D378 OXYGEN SENSOR 4330_4330F Jan 2020