Trends in Marine Dissolved Oxygen: Implications for Ocean Circulation Changes and the Carbon Budget

Recent measurements and model studies have consistently identified a decreasing trend in the concentration of dissolved O$_2$ in the ocean over the last several decades. This trend has important implications for our understanding of anthropogenic climate change. First, the observed oceanic oxygen changes may be a signal of the beginning of a re-organization of large-scale ocean circulation in response to anthropogenic radiative forcing. Second, the re-partitioning of oxygen between the ocean and the atmosphere requires a revision of the current atmospheric carbon budget and the estimates of the terrestrial and oceanic carbon sinks as calculated by the Intergovernmental Panel on Climate Change (IPCC) from measurements of atmospheric O$_2$/N$_2$.

Observations, Models Identify Ocean Circulation Changes as Main Mechanism

Detectable reductions in dissolved O$_2$ have been observed in all major ocean basins (for references, see Plattner et al. [2002]; or Keeling and Garcia [2002]). Local changes as large as 30 µmol kg$^{-1}$ are found (Figure 1), whereas basin-average changes in the North Pacific amount to a few µmol kg$^{-1}$ only.

For example, Kim and colleagues report a large, long-term decrease in the oceanic O$_2$ concentration of more than 20 µmol kg$^{-1}$ in the Japan Sea since the mid-1950s. Keller and colleagues analyzed GEOSECS and WOCE data to calculate basin-wide changes for the North Pacific. They found a decrease in dissolved O$_2$ in the upper ocean and an increase in the deep. Decreasing O$_2$ concentrations were also found by Ono and co-workers, and by Watanabe and co-workers, in subsurface water in the western subarctic Pacific between 1968 and 1998, and by Emerson et al. [2001] analyzing data of four different cruises in the North Pacific during the 1980s and 1990s. Substantial reductions in dissolved O$_2$ are also reported for the eastern South Pacific above 3000 m by Stauffer and colleagues; for the Indian Ocean by Bindoff and McDougall; for the North Atlantic by García and co-workers; and by Pahlow and Riebesell; and for the Southern Ocean by Matear and colleagues.

Taken together, these observations suggest a general decrease in the oceanic O$_2$ inventory, although increases have been observed in the deep North Pacific and the deep south Indian Ocean. The former are also found in model simulations [Plattner et al., 2002].

Dissolved oxygen is controlled by a range of processes. Oxygen is produced in the oceanic surface layer by biological production, whereas it is removed in subsurface waters by the respiration of sinking organic matter. Air-sea gas-exchange equilibrates near-surface waters and the atmosphere on the time scale of weeks, whereas sub-surface oxygen removal is balanced on longer time scales by the transport of oxygen-rich surface waters into the interior ocean. The consequence is that sub-surface oxygen concentrations, and the overall partitioning of oxygen between atmosphere and ocean, are sensitive to the rate of surface-to-deep ocean circulation and mixing, and biological production, as well as temperature and salinity (the latter two determine oxygen solubility).

The observation-based analyses identify ocean circulation changes as the main cause of the observed decrease in dissolved O$_2$. Changes in O$_2$ solubility and changes in biologic export production, and hence, O$_2$ consumption at depth, may have also contributed.

Most models simulate a slowdown of the ocean’s meridional overturning circulation [Cubasch et al., 2001] in response to anthropogenic forcing. Models also show that a consequence is a net loss of oxygen to the atmosphere and estimate that, on average, between 0.2 to 0.7 \cdot 1014 mol O yr$^{-1}$ have been released from the ocean to the atmosphere during the past decade [Sarmiento et al., 1998; Matear et al., 2000; Plattner et al., 2001; Bopp et al., 2002; Plattner et al., 2002].

The modeled concentration changes, ranging from a few µmol kg$^{-1}$ on global average up to 40 µmol kg$^{-1}$ locally, are comparable with the observations [Matear et al., 2000; Plattner et al., 2002]. A reduction in the rate of transport of O$_2$ to depth due to changes in ocean circulation and convection are identified as the
primary reason for the simulated reduction in sub-surface dissolved O$_2$, and the increase in the net sea-to-air O$_2$ flux. Solubility changes, mainly driven by sea surface warming, are responsible for only about 20% of the modeled O$_2$ decrease [Matear et al., 2000; Bopp et al., 2002; Plattner et al., 2002], and modeled changes in biological production have minor effects on the O$_2$ inventory [Plattner et al., 2002].

In conclusion, both the observation-based and ocean model studies identify circulation changes as the dominant mechanism underlying O$_2$ inventory changes.

Further Ocean Circulation Changes Ahead?

Further ocean circulation changes may lie ahead. Since the detection of rapid, abrupt climate change in Greenland ice cores, European lake sediments, and sediments in the deep Atlantic (see Clark et al [2002]), concerns have been expressed that the formation of North Atlantic Deep Water may cease in response to global warming [Broecker, 1987]. This would imply a reduced ocean heat transport to the North Atlantic region, with large consequences for the climate in Europe and the Northern Hemisphere.

The same models that simulate a decrease in dissolved O$_2$ also project a continued decrease in the meridional overturning circulation and North Atlantic Deep Water formation rate over the century, as greenhouse gas emission and global anthropogenic climate change continues. Model results suggest that the meridional overturning circulation is vulnerable to changes in the hydrological cycle and in sea surface temperature [Cubasch et al., 2001]. North Atlantic Deep Water formation may even eventually cease in response to anthropogenic forcing, similar to what happened frequently during the last glacial period. However, since such ocean circulation changes, and in particular, large-scale re-organizations, are highly non-linear processes involving thresholds, there are inherent limitations to the predictability of such phenomena [Knutti and Stocker, 2001].

We conclude that monitoring of the ocean for the circulation changes projected by models is required, and that oxygen may be a particularly sensitive indicator for this purpose.

Revised Estimates of Oceanic and Terrestrial Carbon Sinks

The observed and modeled decrease in dissolved oxygen and the implied net sea-to-air O$_2$ fluxes also affect estimates of CO$_2$ sinks (Table 1). CO$_2$ is the most important anthropogenic greenhouse gas, and an understanding of the processes and the magnitude of the terrestrial and oceanic carbon sink is a prerequisite to project its future atmospheric concentration. The IPCC has estimated carbon uptake by the land biosphere and the ocean using decadal trends in atmospheric oxygen and carbon dioxide [Keeling and Shertz, 1992; Prentice et al., 2001]. The assumption has been that net ocean-to-atmosphere O$_2$ fluxes are negligible on decadal time scales. (A small correction to account for changes in solubility has been included in the IPCC budget for the 1990s.) Recent observations and model results imply that this assumption is flawed [Plattner et al., 2001; Bopp et al., 2002; Keeling and Garcia, 2002; Plattner et al., 2002].

Adjusting the carbon budget for marine oxygen outgassing is, however, not straightforward. The ocean data remain too sparse to estimate global net outgassing. Models do not realistically resolve decadal variability; e.g., in observed ocean heat uptake. Volcanic eruptions interrupt the long-term outgassing [Plattner et al., 2002].

An indirect approach needs to be applied until improved models or a better observational data base become available [Bopp et al., 2002; Keeling and Garcia, 2002; Plattner et al., 2002]. A model-derived empirical relationship between ocean heat uptake and oxygen outgassing has therefore been combined with available ocean heat data [Levitus et al., 2000] to estimate net O$_2$ outgassing. With this indirect approach, the net terrestrial carbon sink estimated for the 1990s is a factor of two lower than the central estimate by the IPCC (Plattner et al. [2002], Table 1).

Important caveats prevent us from firmly quantifying O$_2$ outgassing, and from concluding that ocean circulation is indeed undergoing a global re-organization. It is difficult to extrapolate relatively sparse observations in restricted locations to the global ocean. A possible role of decadal variability for the observed O$_2$ changes cannot be currently quantified. Nevertheless, dissolved O$_2$ is a sensitive integrating property reflecting physical and biogeochemical changes in the marine environment. The O$_2$ signal is influenced not
only by physical transport, but also by the remineralization of organic matter and biogeochemical production, which are themselves strongly controlled by nutrient transport into the surface ocean.

A Strategy for Future Research

Given current model results, and the potentially major climate and societal impact of largescale changes in ocean heat transport, an observation-based strategy for detecting largescale ocean circulation change is urgently required. We suggest that the ocean’s oxygen distribution can be a sensitive indicator of such changes in meridional overturning, and that an observation-based strategy should be developed hand-in-hand with model development. Time series and models of dissolved oxygen inventories have the added benefit of correcting bias and narrowing uncertainties in the contemporary carbon budget.

Such an observational strategy will require a vastly expanded data set for dissolved oxygen compared to that which has been collected in the past. Up to now, accurate oxygen measurements were dependent on infrequent and geographically-limited research vessel-based hydrographic surveys. The need for higher spatial and temporal resolution of ocean temperature and salinity data has led the climate community to develop and deploy an array of new autonomous measurement platforms (profiling floats, gliders, moorings). An excellent example is the international ARGO program (http://www-argo.ucsd.edu).

Use of these platforms for oxygen measurements was limited by a lack of O₂ sensors with the required sensitivity and calibration stability, and possibly, by a lack of awareness of the utility of oxygen as an indicator of circulation change. However, the recent introduction of a fundamentally new optode-based oxygen sensor for marine applications holds promise for overcoming the limitations of previous O₂ measurement technologies (Figure 2). Initial field tests have shown exceptional sensitivity and excellent stability (A. Körtzinger and D.W. Wallace, University of Kiel, unpublished data, 2002). The new technology seems well-suited to deployment on long-term in-situ moorings, profiling floats, and other autonomous platforms.

Given the utility of oceanic oxygen for addressing uncertainties in two major global change concerns (ocean circulation/climate and global carbon sinks), we recommend that serious attention be given to oceanic oxygen inventories by the modeling and ocean measurement communities, including consideration of integrating oxygen measurements into future physical oceanography and climate autonomous measurement programs.

References

Author Information

Fortunat Joos, Physics Institute, University of Bern, Switzerland; Gian-Kasper Plattner, Institute of Geophysics and Planetary Physics, University of California, Los Angeles; Thomas F.Stocker. Physics Institute, University of Bern, Switzerland; Arne Körtzinger and Douglas W.R. Wallace, Institute for Marine Research, University of Kiel, Germany

For more information, contact Fortunat Joos, Climate and Environmental Physics, Physics Institute, University of Bern, E-mail: joos@climate.unibe.ch

Table 1. Revised Global CO₂ Budgets (in Gt C yr⁻¹) Based on Measurements of Atmospheric CO₂ and O₂ and Estimated Ocean Outgassing of O₂.

<table>
<thead>
<tr>
<th></th>
<th>1980 to 1989</th>
<th>1990 to 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric increase</td>
<td>3.3 ± 0.1</td>
<td>3.2 ± 0.1</td>
</tr>
<tr>
<td>Fossil emissions</td>
<td>5.4 ± 0.3</td>
<td>6.3 ± 0.4</td>
</tr>
<tr>
<td>Ocean atmosphere flux</td>
<td>-1.7 ± 0.6 (-1.9 ± 0.6)</td>
<td>-2.4 ± 0.7 (-1.7 ± 0.5)</td>
</tr>
<tr>
<td>Land-atmosphere flux</td>
<td>-0.4 ± 0.7 (+0.2 ± 0.7)</td>
<td>-0.7 ± 0.8 (-1.4 ± 0.7)</td>
</tr>
<tr>
<td>Land use change</td>
<td>2.0 ± 0.8</td>
<td>2.2 ± 0.8</td>
</tr>
<tr>
<td>Residual terrestrial sink</td>
<td>-2.4 ± 1.1</td>
<td>-2.9 ± 1.1</td>
</tr>
</tbody>
</table>

Note: The atmospheric increase and fossil emissions are from Prentice et al [2001], the oceanic and terrestrial carbon uptake fluxes are from Plattner et al. [2002], and the land use change fluxes are from Houghton [2003]. The numbers in parentheses are the sinks estimated by IPCC [Prentice et al., 2001], on the assumption of no net O₂ outgassing due to circulation changes. The corrections in the sink fluxes suggested by Plattner et al. [2002], based on an ocean heat uptake rate of -0.39 · 10⁻² °C yr⁻¹ for the 1980s, and +1.24 · 10⁻² °C yr⁻¹ for the 1990s, and a model-derived relationship between heat uptake and changes in atmospheric O₂/N, due to outgassing of 1.36 per meg (10⁻⁶ °C yr⁻¹), are similar to those found by Bopp et al. [2002], but considerably larger than those proposed by Keeling and Garcia [2002] and LeQuéré et al. [2003]. The residual terrestrial sink is inferred by difference, using independent analyses of the land use change term. Recent studies suggest that the land use change term and the residual terrestrial sink may be substantially smaller.